Algorithmic of LWE-based submissions
 to NIST Post-Quantum Standardization Effort

Tancrède Lepoint
March 21, 2018

SRI International

Outline

1. Introduction
2. SIS and LWE
3. Public-Key Encryption and Signatures
4. Adding Structure

Small break:)

5. A Few Submissions to NIST
6. Some Implementation Considerations
7. Conclusion

Introduction

Lattices in Antoine's Landscape

The community reacts

One of the straight pillars?

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

Almacrypt Workshop		Post-Quantum Crypto Lounge -SA \times		Estimate all the (LWE, NTRU) scher \times		+				
$\leftarrow \rightarrow$ C $\hat{\omega}$		(i) https://www.safecrypto.eu/pqclounge/						$\cdots \cdots$	III (1)	
Home About SAF	FEcrypto	More Information	Outcomes	News and Events	Post-Quantu	Crypto Lou	Q			
LAC Zip file	Xianhui Lu Jia /Haiya /Zhenfei Z	u /Yamin Liu /Dingding ang Xue /Jingnan He Zhang	Lattice	Poly	KEM Encryption	Round 1		CCA		
DRS Zip file		Plantard/ Arnaud h/ Cedric Dumondelle/ silo	Lattice	Standard	Signature	Round 1		EUF-CMA		
Frodokem Zip file		Naehrig /Erdem Alkim os /Leo Ducas /Karen ook /Brian LaMacchia Longa /Ilya Mironov Nikolaenko /Christopher Ananth Raghunathan Stebila	Lattice	Standard	KEM	Round 1		CCA		
Giophantus Zip file	Koichiro A /Shinya O Takagi /Ko Hanaoka /Yasuhiko	Akiyama / Yasuhiro Goto Okumura /Tsuyoshi Koji Nuida / Goichiro /Hideo Shimizu Ikematsu	Lattice	Standard	Encryption	Round 1	ATTACKED	CPA	Distinguishing attack that breaks the claimed IND-CPA security, can be avoided by switching the base ring	
NTRU-HRSS- KEM Zip file	John M. S Hulsing /] Schwabe	Schanck / Andreas Joost Rijneveld /Peter	Lattice	Ring	KEM	Round 1		CCA2		
FALCON Zip file	Thomas Fouque /] Vimhmar	Prest / Pierre-Alain Jeffrey Hoffstein /Paul Atadim I wat ihanhanmoles.	Lattice	Ring	Signature	Round 1		EUF-CMA		

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

Lattices (Quick Reminders)

Lattices (Quick Reminders)

Lattices (Quick Reminders)

Worst-Case to Average-Case Reduction

Generating Hard Instances of Lattice Problems
Extended abstract
M. Ajtai
IBM Almaden Research Center
650 Harry Road, San Jose, CA, 95120
e-mail: ajtai@almaden.ibm.com

Abstract

We give a random class of lattices in \mathbf{Z}^{n} so that, if there is a probabilistic polynomial time algorithm which finds a short vector in a random lattice with a probability of at least $\frac{1}{2}$ then there is also a probabilistic polynomial time algorithm which solves the following three lattice problems in every lattice in \mathbf{Z}^{n} with a probability exponentially close to one. (1) Find the length of a shortest nonzero vector in an n-dimensional lattice, approximately, up to a polynomial factor. (2) Find the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v is unique in the sense that any other vector whose length is at most $n^{c}\|v\|$ is parallel to v, where c is a sufficiently large absolute constant. (3) Find a basis b_{1}, \ldots, b_{n} in the n-dimensional lattice L whose length, defined as $\max _{i=1}^{n}\left\|b_{i}\right\|$, is the smallest possible up to a polynomial factor.

Quotes from Ajtai's paper [Ajtai'96]

- "cryptography [...] generation of a specific instance of a problem in NP which is thought to be difficult"
- "NP-hard problems"
- "very famous questions (e.g., factorization)"
"Unfortunately, 'difficult to solve' means [...] in the worst case"
- "no guidance how to create [a hard instance]"
- "possible solution"

1. "find a set of randomly generated problems", and
2. "show that if there is an algorithm which [works] with a positive probability, there is also an algorithm that solves the famous problem in the worst case"

- "In this paper we give such a class of random problems"

An Example: Discrete Logarithm Self-Reducibility

We use a similar property in cryptanalysis: discrete logarithm self-reducibility

To avoid this pitfall, we propose a new, faster, technique to find good representations. The main idea is that, since we are searching for a smooth representation (involving good primes only), it seems natural to try a sieving algorithm. Thus, we use some kind of sieving to write x (the number whose logarithm is wanted) as A / B, where both A and B are smooth. Since not all values of x admit a good representation, we also use the now classical trick (also in [24]) of replacing x by $z=s^{i} x$, where s is the largest small prime whose logarithms can be computed from the factor bases, and where i is incremented whenever we need a new value for z. Since the logarithm of s is known at this step, computing the logarithm of z clearly gives the logarithm of x.
[Joux-Lercier'2002] (citing [LaMacchia-Odlyzko’91])

An Example: Discrete Logarithm Self-Reducibility

We use a similar property in cryptanalysis: discrete logarithm self-reducibility

- Goal. Let p be a prime, $g \in Z_{p}^{\times}$generator of (prime order sub-) group $G=\left\{g^{i} \mid i \in \mathbf{Z}\right\}$, input $h=g^{i}$. Find $i \bmod |G|$.
- Key idea. Given $g, h \in G$, compute $g^{\prime}=g^{a}$ and $h^{\prime}=h^{a b}$ for random $a, b \in Z_{q}^{\times}$.
- g^{\prime}, h^{\prime} almost uniformly random
- $h^{\prime}=h^{a b}=\left(g^{i}\right)^{a b}=\left(g^{\prime}\right)^{i b}$

Finding discrete logarithm of h^{\prime} wrt base point g^{\prime} allows to find that of h wrt g.

This Talk

- SIS and LWE: the building blocks for lattice-based cryptography
- Regev's Encryption Scheme and Key Encapsulation Mechanism
- Ring and Module-LWE
- Specifications of real NIST candidates
- Some comments on noise errors and implementations choices

SIS and LWE

How did I draw this picture?

Matrix representation

\foreach $\backslash x$ in $\{-10,-9, \ldots, 10\}$ \{
\foreach \y in $\{-10,-9, \ldots, 10\}\{$
\node[fill, inner sep=0pt, minimum size=3pt, circle] at $(\$(2 * \backslash x+1.4 * \backslash y, 2 * \backslash y+\backslash x) \$)\} ;$ \}
\}

Matrix representation

\foreach $\backslash x$ in $\{-10,-9, \ldots, 10\}$ \{
\foreach \y in $\{-10,-9, \ldots, 10\}$ \{
\node[fill, inner sep=0pt, minimum size=3pt, circle] at $(\$(2 * \backslash x+1.4 * \backslash y, 2 * \backslash y+\backslash x) \$)\} ;$ \}
\}

$$
L=\operatorname{lm}\left(\begin{array}{cc}
2 & 1.4 \\
1 & 2
\end{array}\right)
$$

Construction of q-ary lattice (Primal)

Let q be a prime integer and $n<m$ two integer parameters.

The matrix $A \in Z_{q}^{m \times n}$ spans the q-ary lattice:

$$
\begin{aligned}
\Lambda_{q}(A) & =\left\{\vec{x} \in \mathbf{Z}^{m} \mid \exists \vec{y} \in \mathbf{Z}_{q}^{n}, \vec{x}=A \vec{y} \bmod q\right\} \\
& =A \cdot \mathbf{Z}_{q}^{n}+q \mathbf{Z}^{m}
\end{aligned}
$$

Assuming A is full-rank:

- $\operatorname{dim}\left(\Lambda_{q}(A)\right)=m$
- $\operatorname{vol}\left(\Lambda_{q}(A)\right)=q^{m-n}$

Construction of q-ary lattice (Dual)

Let q be a prime integer and $n<m$ two integer parameters.

The matrix $A^{t} \in Z_{q}^{n \times m}$ is the parity-check of the lattice:

$$
\begin{aligned}
\Lambda_{q}^{\perp}\left(A^{t}\right) & =\left\{\vec{x} \in Z^{m} \mid A^{t} \vec{x} \equiv 0 \bmod q\right\} \\
& =\operatorname{ker}\left(\vec{x} \mapsto A^{t} \vec{x} \bmod q\right)
\end{aligned}
$$

Assuming A is full-rank:

- $\operatorname{dim}\left(\wedge_{q}^{\perp}(A)\right)=m$
- $\operatorname{vol}\left(\Lambda_{q}^{\perp}(A)\right)=q^{n}$

The Short Integer Solution Problem (SIS)

Definition (SIS Assumption)

Given a random matrix A, finding a small non-zero $\vec{x} \in Z_{q}^{n}$ such that $A \vec{x} \equiv 0 \bmod q$ is hard.

Lattice formulation

Solving Approx-SVP in $\Lambda_{q}^{\perp}(A)$ is hard.

Worst-case to average-case connection due in [Ajtai'96].

Graphical Representation of SIS

Graphical Representation of SIS

- Finding a solution \vec{x} is easy

Graphical Representation of SIS

- Finding a solution \vec{x} is easy
- Finding a non-zero solution \vec{x} is easy

Graphical Representation of SIS

- Finding a solution \vec{x} is easy
- Finding a non-zero solution \vec{x} is easy
- Finding a small non-zero solution \vec{x} can be hard

Collision Resistant Hash Function from SIS

Let $m \gg n \log q$.

$$
\begin{aligned}
f_{A}:\{0,1\}^{m} & \rightarrow \mathrm{Z}_{q}^{n} \\
\vec{x} & \mapsto A \vec{x} \bmod q
\end{aligned}
$$

SIS \Rightarrow Collision Resistant Hashing (and One-Way Function)

- Collision must exist when $m>n \log q$
- Finding collision is as hard as SIS

The Learning With Error problem (LWE)

European Association for Theoretical Computer Science

2018 Gödel Prize

The 2018 Gödel Prize is awarded to Professor Oded Regev for his paper:

- On lattices, learning with errors, random linear codes, and cryptography Journal of the ACM, volume 56 , issue 6, 2009 (preliminary version in the 37th annual Symposium on Theory of Computing, STOC 2005.)

This year the prize will be awarded at the 45th International Colloquium on Automata, Languages, and Programming to be held during July 9-13, 2018 in Prague, Czech Republic.
Regev's paper introduced the Learning With Errors (LWE) problem, and proved its average-case hardness assuming the worst-case (quantum) hardness of various well-studied problems on point lattices in Rn. It also gave an LWEbased public-key encryption scheme that is much simpler and more efficient than prior ones having similar worstcase hardness guarantees; this system has served as the foundation for countless subsequent works. Lastly, the paper introduced elegant and powerful techniques, including a beautiful quantum algorithm, for the study of lattice problems in cryptography and computational complexity. Regev's work has ushered in a revolution in cryptography, in both theory and practice. On the theoretical side, LWE has served as a simple and yet amazingly versatile foundation for nearly every kind of cryptographic object imaginable-along with many that were unimaginable until recently, and which still have no known constructions without LWE. Toward the practical end, LWE and its direct descendants are at the heart of several efficient real-world cryptosystems.
The Gödel Prize includes an award of USD 5,000, and is named in honor of Kurt Gödel, who was born in AustriaHungary (now the Czech Republic) in 1906. Gödel's work has had immense impact upon scientific and philosophical thinking in the 20th century. The award recognizes his major contributions to mathematical logic and the foundations of computer science.

Let χ be a distribution of small errors $\ll q$.
Definition (Decisional LWE)
For $A \leftarrow \mathrm{Z}_{q}^{m \times n}, \vec{s} \leftarrow \mathrm{Z}_{q}^{n}$, and $\vec{e} \leftarrow \chi^{m}$,
distinguishing $(A, A \vec{s}+\vec{e})$ from uniform is hard.

Let χ be a distribution of small errors $\ll q$.

Definition (Decisional LWE)

$$
\begin{aligned}
& \text { For } A \leftarrow Z_{q}^{m \times n}, \vec{s} \leftarrow Z_{q}^{n} \text {, and } \vec{e} \leftarrow \chi^{m} \text {, } \\
& \text { distinguishing }(A, A \vec{s}+\vec{e}) \text { from uniform is hard. }
\end{aligned}
$$

Definition (Search LWE)

For $A \leftarrow \mathrm{Z}_{q}^{m \times n}, \vec{s} \leftarrow \mathbf{Z}_{q}^{n}$, and $\vec{e} \leftarrow \chi^{m}$,
given $(A, A \vec{s}+\vec{e})$, finding \vec{s} is hard.

Both problems are easily proved equivalent.

Let χ be a distribution of small errors $\ll q$.

Definition (Decisional LWE)

For $A \leftarrow \mathbf{Z}_{q}^{m \times n}, \vec{s} \leftarrow \mathbf{Z}_{q}^{n}$, and $\vec{e} \leftarrow \chi^{m}$,
distinguishing $(A, A \vec{s}+\vec{e})$ from uniform is hard.

Definition (Search LWE)

For $A \leftarrow \mathrm{Z}_{q}^{m \times n}, \vec{s} \leftarrow \mathrm{Z}_{q}^{n}$, and $\vec{e} \leftarrow \chi^{m}$,
given $(A, A \vec{s}+\vec{e})$, finding \vec{s} is hard.
Both problems are easily proved equivalent.
Lattice formulation
Solving BDD in $\Lambda_{q}(A)$ is hard.
Worst-case to average-case connection due to [Regev'05].

Graphical Representation of LWE

(One-bit) Secret-Key Encryption from LWE

Keygen:

$$
s k=\vec{s} \leftarrow \$
$$

(One-bit) Secret-Key Encryption from LWE

(One-bit) Secret-Key Encryption from LWE

What's "small"?

- Usually a discrete Gaussian distribution of width $s=\alpha q$ for error rate $\alpha<1$
- Define the Gaussian function

$$
\rho_{s}(\vec{x})=\exp \left(-\pi\|\vec{x}\|^{2} / s^{2}\right)
$$

- The continuous Gaussian distribution has probability density function

$$
f(\vec{x})=\rho_{s}(\vec{x}) / \int_{\mathbb{R}^{n}} \rho_{s}(\vec{z}) d \vec{z}=\rho_{s}(\vec{x}) / s^{n}
$$

Reductions

- Parameters: integer n, integer modulus q, error 'rate' $\alpha(s=q \alpha)$

Worst-case SIVP \leq Search-LWE

[Regev'05]
One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy, many reductions for different q's
- Any prime $q=\operatorname{poly}(n)$
[Regev'05]
- Any "somewhat smooth" $q=p_{1} \cdots p_{t}$, large $p_{i}^{\prime} s \quad$ [Peikert'09]
- Any $q=p^{e} \quad$ [ACPS'09,MM'11,MP'12]
- Any q via 'modulus switching' (increases α)
[BLPRS'13]
- Increasing q, α yields a weaker ultimate hardness guarantee

Public-Key Encryption

Using a systemic-normal form, one can assume that $\vec{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

Using a systemic-normal form, one can assume that $\vec{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

		$\vec{e} \leftarrow \chi^{m}$
Keygen:		$s k=\vec{s} \leftarrow \chi^{n}$
		$p \mathrm{p}=(A, A \vec{s}+\vec{e})$

Using a systemic-normal form, one can assume that $\vec{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

Keygen:

$$
\begin{aligned}
& \vec{e} \leftarrow \chi^{m} \\
& \mathrm{sk}=\vec{s} \leftarrow \chi^{n} \\
& \mathrm{pk}=(A, A \vec{s}+\vec{e})
\end{aligned}
$$

Encrypt:

$$
\begin{aligned}
& \vec{t} \leftarrow \chi^{n} \\
& e, f \leftarrow \chi^{n} \times \chi \\
& \vec{u}=\vec{t}^{t} A+e \\
& v=\vec{t}^{t} \vec{b}+f+\lfloor q / 2\rfloor m
\end{aligned}
$$

Using a systemic-normal form, one can assume that $\vec{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

Keygen:

$$
\begin{aligned}
& \vec{e} \leftarrow \chi^{m} \\
& \mathrm{sk}=\vec{s} \leftarrow \chi^{n} \\
& \mathrm{pk}=(A, A \vec{s}+\vec{e})
\end{aligned}
$$

Encrypt:

$$
\begin{aligned}
& \vec{t} \leftarrow \chi^{n} \\
& e, f \leftarrow \chi^{n} \times \chi \\
& \vec{u}=\vec{t}^{t} A+e \\
& v=\vec{t}^{t} \vec{b}+f+\lfloor q / 2\rfloor m
\end{aligned}
$$

Decrypt:

$$
\begin{aligned}
& w=v-\vec{u} \vec{s} \\
& \mu=\left\lfloor\frac{2}{q} w\right\rfloor \bmod 2
\end{aligned}
$$

Key Encapsulation Mechanism

$\square \square \square$? , :

\square
■■■

Motivation: TLS

Server

Client

ClientHello

ServerHello
CertificateChain
\square
ServerKeyExchange

ClientKeyExchange

ClientComputeKey
Finished

ServerComputeKey

Finished

Frodo-PKE

```
Algorithm 9 FrodoPKE.KeyGen.
Input: None.
Output: Key pair (pk,sk)\in({0,1\mp@subsup{}}{}{l/\mp@subsup{e}{\textrm{n}}{A}}\times\mp@subsup{\mathbb{Z}}{q}{n\times\overline{n}})\times\mp@subsup{\mathbb{Z}}{q}{n\times\overline{n}}.
    Choose a uniformly random seed seed }\mp@subsup{\textrm{A}}{\mathbf{A}}{}\leftarrow&U({0,1\mp@subsup{}}{}{\mp@subsup{\operatorname{len}}{\mathbf{A}}{}}
    Generate the matrix A}\in\mp@subsup{\mathbb{Z}}{q}{n\timesn}\mathrm{ via }\mathbf{A}\leftarrowF\mathrm{ Frodo.Gen(seed}\mathbf{A}
    Choose a uniformly random seed seed}\mp@subsup{\textrm{E}}{\textrm{E}}{}\leftarrow&U({0,1}\mp@subsup{}}{}{l/\mp@subsup{\textrm{en}}{\textrm{E}}{}}
    Sample error matrix S &Frodo.SampleMatrix(seed E , n, \overline{n},\mp@subsup{T}{\chi}{},1)
    5: Sample error matrix E }\leftarrow\mathrm{ Frodo.SampleMatrix(seed E , n, 
    6: Compute B=AS}+\mathbf{E
    7: return public key pk\leftarrow(\mp@subsup{\operatorname{sed}}{\mathbf{A}}{\mathbf{A}}\mathbf{B})\mathrm{ and secret key }sk\leftarrow\mathbf{S}
```

```
Algorithm 10 FrodoPKE.Enc.
Input: Message \(\mu \in \mathcal{M}\) and public key \(p k=\left(\operatorname{seed}_{\mathbf{A}}, \mathbf{B}\right) \in\{0,1\}^{\operatorname{len} \mathbf{A}} \times \mathbb{Z}_{q}^{n \times \bar{n}}\).
Output: Ciphertext \(c=\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \in \mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{\bar{m} \times \bar{n}}\).
    Generate \(\mathbf{A} \leftarrow\) Frodo.Gen \(\left(\right.\) seed \(\left._{\mathbf{A}}\right)\)
    Choose a uniformly random seed \(\operatorname{seed}_{\mathrm{E}} \leftarrow U\left(\{0,1\}^{\operatorname{len}}{ }^{\mathrm{n}}\right)\)
    Sample error matrix \(\mathbf{S}^{\prime} \leftarrow\) Frodo.SampleMatrix(seed \(\left.\mathbf{E}, \bar{m}, n, T_{\chi}, 4\right)\)
    Sample error matrix \(\mathbf{E}^{\prime} \leftarrow\) Frodo.SampleMatrix \(\left(\operatorname{seed}_{\mathbf{E}}, \bar{m}, n, T_{\chi}, 5\right)\)
    Sample error matrix \(\mathbf{E}^{\prime \prime} \leftarrow\) Frodo.SampleMatrix \(\left(\operatorname{seed}_{\mathbf{E}}, \bar{m}, \bar{n}, T_{\chi}, 6\right)\)
    Compute \(\mathbf{B}^{\prime}=\mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}\) and \(\mathbf{V}=\mathbf{S}^{\prime} \mathbf{B}+\mathbf{E}^{\prime \prime}\)
    return ciphertext \(c \leftarrow\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)=\left(\mathbf{B}^{\prime}, \mathbf{V}+\operatorname{Frodo} . \operatorname{Encode}(\mu)\right)\)
```

Algorithm 11 FrodoPKE.Dec.
Input: Ciphertext $c=\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \in \mathbb{Z}_{q}^{\bar{m} \times n} \times \mathbb{Z}_{q}^{\bar{m} \times \bar{n}}$ and secret key $s k=\mathbf{S} \in \mathbb{Z}_{q}^{n \times \bar{n}}$.
Output: Decrypted message $\mu^{\prime} \in \mathcal{M}$.
1: Compute $\mathbf{M}=\mathbf{C}_{2}-\mathbf{C}_{1} \mathbf{S}$
2: return message $\mu^{\prime} \leftarrow$ Frodo.Decode(\mathbf{M})

FrodoKEM Sizes

- FrodoKEM-640: $n=640, q=32768, \bar{m}=\bar{n}=8$
- FrodoKEM-946: $n=946, q=65536, \bar{m}=\bar{n}=8$

Table 4: Size (in bytes) of inputs and outputs of FrodoKEM. Secret key size is the sum of the sizes of the actual secret value and of the public key (the NIST API does not include the public key as explicit input to decapsulation).

Scheme	secret key	public key $p k$	ciphertext	shared secret $\|$$c k$
	19,872	9,616	9,736	16
FrodoKEM-976	$(10,256+9,616)$ 31,272 $(15,640+15,632)$	15,632	15,768	24

Adding Structure

Key Ideas: Ring-LWE and Module-LWE

anticyclic rotations

Key Ideas: Ring-LWE and Module-LWE

$$
\left(\begin{array}{c}
\vdots \\
\mathrm{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathrm{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right)
$$

- Get n pseudorandom scalars from just one cheap \star operation?

$$
\left(\begin{array}{c}
\vdots \\
\mathrm{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathrm{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right)
$$

- Get n pseudorandom scalars from just one cheap \star operation?

Question

-How to define the product \star so that $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?

- Careful! With small error, coordinate-wise multiplication is insecure!

Wishful thinking

$$
\left(\begin{array}{c}
\vdots \\
\mathrm{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathrm{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right)
$$

- Get n pseudorandom scalars from just one cheap \star operation?

Question

-How to define the product \star so that $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?

- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- $\star=$ multiplication in a polynomial ring: e.g., $Z_{q}[x] /\left(x^{n}+1\right)$. Fast and practical with FFT: $n \log n$ operations $\bmod q$.
- Same ring structures used in NTRU cryptosystem [HPS'98], \& in compact one-way / CR hash functions [Mic'02,PR'06,LM’06,...]
- Let R be a ring, often $R=Z[x] /(f(x))$ for irreducible f of degree n (or $R=\mathcal{O}_{K}$).
Has a ‘dual ideal' R^{\vee} (w.r.t. 'canonical' geometry).
- Let R be a ring, often $R=Z[x] /(f(x))$ for irreducible f of degree n (or $R=\mathcal{O}_{K}$).
Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry).
- Integer modulus q defining $R_{q}=R / q R$ and $R_{q}^{\vee}=R^{\vee} / q R^{\vee}$
- Let R be a ring, often $R=Z[x] /(f(x))$ for irreducible f of degree n (or $R=\mathcal{O}_{K}$).
Has a 'dual ideal' R^{V} (w.r.t. 'canonical' geometry).
- Integer modulus q defining $R_{q}=R / q R$ and $R_{q}^{\vee}=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}
- Let R be a ring, often $R=Z[x] /(f(x))$ for irreducible f of degree n (or $R=\mathcal{O}_{K}$).
Has a ‘dual ideal' R^{\vee} (w.r.t. 'canonical' geometry).
- Integer modulus q defining $R_{q}=R / q R$ and $R_{q}^{\vee}=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

Definition (Search R-LWE)

Find secret ring element $s \in R_{q}^{\vee}$, given m independent samples $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}=\mathrm{a}_{i} \cdot \mathrm{~s}+\mathrm{e}_{i}\right)$

Ring Learning With Errors

- Let R be a ring, often $R=Z[x] /(f(x))$ for irreducible f of degree n (or $R=\mathcal{O}_{K}$).
Has a ‘dual ideal' R^{\vee} (w.r.t. 'canonical' geometry).
- Integer modulus q defining $R_{q}=R / q R$ and $R_{q}^{\vee}=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

Definition (Search R-LWE)

Find secret ring element $s \in R_{q}^{\vee}$, given m independent samples

$$
\left(\mathrm{a}_{i}, \mathrm{~b}_{i}=\mathrm{a}_{i} \cdot \mathrm{~s}+\mathrm{e}_{i}\right)
$$

Definition (Decisional R-LWE)

Distinguish $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ from uniform $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right) \in R_{q} \times R_{q}^{\vee}$

Reduction

worst-case $\left(n^{c} / \alpha\right)$-SIVP \leq worst-case Ring-LWE $_{q, \alpha}$ on ideal lattices in R

(quantum, any $R=\mathcal{O}_{K}$, any $q \geq n^{c-1 / 2} / \alpha$)

Hardness of Ring-LWE

Reduction
worst-case $\left(n^{c} / \alpha\right)$-SIVP \leq worst-case Ring-LWE $_{q, \alpha}$ on ideal lattices in R
(quantum, any $R=\mathcal{O}_{K}$, any $q \geq n^{c-1 / 2} / \alpha$)
Which ring to use?

- Previous result gives no guidance
- There exists no nontrivial relation between lattice problems over different rings
- Progress on Ideal-SIVP
- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime power cyclotomics [Ber14,CGS14,BS16,CDPR16,CDW17]
- Classical quasi-poly-time in multiquadratic fields [Ber14,BBdVLvV'17]

Rings in Literature

What are the typical options for R throughout the literature?

Rings in Literature

What are the typical options for R throughout the literature?

- $R=\mathrm{Z}[x] /\left(x^{n}-1\right)$ [HPS'96, Mic'02]

Rings in Literature

What are the typical options for R throughout the literature?

- $R=Z[x] /\left(x^{n}-1\right)$ [HPS'96, Mic'02]
- $R=\mathrm{Z}[x] /\left(x^{n}+1\right) \&$ cyclotomics [LR'06,ML'06,LPR'10]

Rings in Literature

What are the typical options for R throughout the literature?

- $R=Z[x] /\left(x^{n}-1\right)$ [HPS'96, Mic'02]
- $R=\mathrm{Z}[x] /\left(x^{n}+1\right) \&$ cyclotomics [LR'06,ML'06,LPR'10]
- Alternate rings with even less structure like $Z[x] /\left(x^{p}-x-1\right)$ [BCLvV'16]
- Complex (but still fast!) multiplication

Rings in Literature

What are the typical options for R throughout the literature?

- $R=\mathrm{Z}[x] /\left(x^{n}-1\right)$ [HPS'96, Mic'02]
- $R=\mathrm{Z}[x] /\left(x^{n}+1\right) \&$ cyclotomics [LR'06,ML'06,LPR'10]
- Alternate rings with even less structure like $\mathbf{Z}[x] /\left(x^{p}-x-1\right)$ [BCLVV'16]
- Complex (but still fast!) multiplication
- Module-LWE [LS'15]
- MLWE bridges a gap between LWE and RLWE;
- $R=R_{1} \times \cdots \times R_{\ell}$;
- where each R_{i} can have a different structure;
- LWE: $R_{i}=\mathrm{Z} ;$ RLWE: $\ell=1$;
- Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be submitted to NIST

Power-of-2 cyclotomic

$$
R=\mathrm{Z}[x] /\left(x^{n}+1\right)
$$

- Choosing small errors in the polynomial embedding is equivalent to selecting small errors in the canonical embedding (where the actual Ring-LWE problem lies)
- Fast polynomial multiplication using the Fast Fourier Transform ($n \log n$ operations over coefficients mod q)
- No indication that these rings would be insecure; most widely studied, and best understood, rings (along with other cyclotomic rings) in algebraic number theory

Module-LWE

Let R be a ring, q be an integer, and $R_{q}=R / q R$. Let χ be a distribution of small errors. Let k, ℓ be parameter integers.

Module-LWE

Let R be a ring, q be an integer, and $R_{q}=R / q R$. Let χ be a distribution of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{n}\right)^{k}$, distinguish $(A, A \vec{S}+\vec{e})$ from uniform is hard.

Module-LWE

Let R be a ring, q be an integer, and $R_{q}=R / q R$. Let χ be a distribution of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{n}\right)^{k}$,
distinguish $(A, A \vec{s}+\vec{e})$ from uniform is hard.

Search Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{\eta}\right)^{k}$,
given $(A, A \vec{s}+\vec{e})$, finding \vec{s} is hard.

Module-LWE

Let R be a ring, q be an integer, and $R_{q}=R / q R$. Let χ be a distribution of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{n}\right)^{k}$,
distinguish $(A, A \vec{s}+\vec{e})$ from uniform is hard.

Search Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{n}\right)^{k}$,
given $(A, A \vec{s}+\vec{e})$, finding \vec{s} is hard.

- For $R=Z[x] /\left(x^{n}+1\right)$ and $\ell=1$, we get Ring-LWE

Module-LWE

Let R be a ring, q be an integer, and $R_{q}=R / q R$. Let χ be a distribution of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{n}\right)^{k}$,
distinguish $(A, A \vec{s}+\vec{e})$ from uniform is hard.

Search Module-LWE

For $A \leftarrow R_{q}^{k \times \ell}, \vec{s} \leftarrow R_{q}^{\ell}$, and $\vec{e} \leftarrow\left(\chi^{\eta}\right)^{k}$,
given $(A, A \vec{s}+\vec{e})$, finding \vec{s} is hard.

- For $R=\mathrm{Z}[x] /\left(x^{n}+1\right)$ and $\ell=1$, we get Ring-LWE
- For $R=\mathrm{Z}$ and $\ell=n$, we get LWE

A Few Submissions to NIST

Let's review some submissions

- FrodoKEM: Key Encapsulation Mechanism based on LWE
- NewHope: Key Encapsulation Mechanism based on Ring-LWE
- CRYSTALS-Kyber: Key Encapsulation Mechanism based on Module-LWE
- Special mentions of ThreeBears, OddManhattan, Titanium

Frodo-PKE

```
Algorithm 9 FrodoPKE.KeyGen.
Input: None.
Output: Key pair (pk,sk)\in({0,1\mp@subsup{}}{}{l/\mp@subsup{e}{\textrm{n}}{A}}\times\mp@subsup{\mathbb{Z}}{q}{n\times\overline{n}})\times\mp@subsup{\mathbb{Z}}{q}{n\times\overline{n}}.
    Choose a uniformly random seed seed }\mp@subsup{\textrm{A}}{\mathbf{A}}{}\leftarrow&U({0,1\mp@subsup{}}{}{\mp@subsup{\operatorname{len}}{\mathbf{A}}{}}
    Generate the matrix A}\in\mp@subsup{\mathbb{Z}}{q}{n\timesn}\mathrm{ via }\mathbf{A}\leftarrowF\mathrm{ Frodo.Gen(seed}\mathbf{A}
    Choose a uniformly random seed seed}\mp@subsup{\textrm{E}}{\textrm{E}}{}\leftarrow&U({0,1}\mp@subsup{}}{}{l/\mp@subsup{\textrm{en}}{\textrm{E}}{}}
    Sample error matrix S &Frodo.SampleMatrix(seed E , n, \overline{n},\mp@subsup{T}{\chi}{},1)
    5: Sample error matrix E }\leftarrow\mathrm{ Frodo.SampleMatrix(seed E , n, 
    6: Compute B=AS}+\mathbf{E
    7: return public key pk\leftarrow(\mp@subsup{\operatorname{sed}}{\mathbf{A}}{\mathbf{A}}\mathbf{B})\mathrm{ and secret key }sk\leftarrow\mathbf{S}
```

```
Algorithm 10 FrodoPKE.Enc.
Input: Message \(\mu \in \mathcal{M}\) and public key \(p k=\left(\operatorname{seed}_{\mathbf{A}}, \mathbf{B}\right) \in\{0,1\}^{\operatorname{len} \mathbf{A}} \times \mathbb{Z}_{q}^{n \times \bar{n}}\).
Output: Ciphertext \(c=\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \in \mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{\bar{m} \times \bar{n}}\).
    Generate \(\mathbf{A} \leftarrow\) Frodo.Gen \(\left(\right.\) seed \(\left._{\mathbf{A}}\right)\)
    Choose a uniformly random seed \(\operatorname{seed}_{\mathrm{E}} \leftarrow U\left(\{0,1\}^{\operatorname{len}}{ }^{\mathrm{n}}\right)\)
    Sample error matrix \(\mathbf{S}^{\prime} \leftarrow\) Frodo.SampleMatrix(seed \(\left.\mathbf{E}, \bar{m}, n, T_{\chi}, 4\right)\)
    Sample error matrix \(\mathbf{E}^{\prime} \leftarrow\) Frodo.SampleMatrix \(\left(\operatorname{seed}_{\mathbf{E}}, \bar{m}, n, T_{\chi}, 5\right)\)
    Sample error matrix \(\mathbf{E}^{\prime \prime} \leftarrow\) Frodo.SampleMatrix \(\left(\operatorname{seed}_{\mathbf{E}}, \bar{m}, \bar{n}, T_{\chi}, 6\right)\)
    Compute \(\mathbf{B}^{\prime}=\mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}\) and \(\mathbf{V}=\mathbf{S}^{\prime} \mathbf{B}+\mathbf{E}^{\prime \prime}\)
    return ciphertext \(c \leftarrow\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)=\left(\mathbf{B}^{\prime}, \mathbf{V}+\operatorname{Frodo} . \operatorname{Encode}(\mu)\right)\)
```

Algorithm 11 FrodoPKE.Dec.
Input: Ciphertext $c=\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \in \mathbb{Z}_{q}^{\bar{m} \times n} \times \mathbb{Z}_{q}^{\bar{m} \times \bar{n}}$ and secret key $s k=\mathbf{S} \in \mathbb{Z}_{q}^{n \times \bar{n}}$.
Output: Decrypted message $\mu^{\prime} \in \mathcal{M}$.
1: Compute $\mathbf{M}=\mathbf{C}_{2}-\mathbf{C}_{1} \mathbf{S}$
2: return message $\mu^{\prime} \leftarrow$ Frodo.Decode(\mathbf{M})

NewHope-PKE

```
Algorithm 1 NewHope-CPA-PKE Key Generation
    function NewHope-CPA-PKE.GEN()
        seed }\stackrel{&}{\leftarrow}{0,\ldots,255\mp@subsup{}}{}{32
        z}\leftarrow\mathrm{ SHAKE256 (64, seed)
        publicseed }\leftarrowz[0:31
        noiseseed }\leftarrowz[32:63
        \hat{a}}\leftarrow\textrm{GenA(publicseed)
        s}\leftarrow\operatorname{PolyBitRev(Sample(noiseseed,0))
        s}\leftarrow~NTT(s
        e}\leftarrow\mathrm{ PolyBitRev(Sample(noiseseed,1))
        e }\leftarrowNTT(e
        \hat { \mathbf { b } } \leftarrow \hat { \mathbf { a } } \circ \hat { \mathbf { s } } + \hat { \mathbf { e } }
        return (pk=EncodePK(\hat{\mathbf{b}},\mathrm{ publicseed), sk= EncodePolynomial(s))}
```


Algorithm 2 NewHope-CPA-PKE Encryption

 function NEWHOPE-CPA-PKE.ENCRYPT \(\left(p k \in\{0, \ldots, 255\}^{7 \cdot n / 4+32}, \mu \in\{0, \ldots, 255\}^{32}\right.\),
 \(\left.\operatorname{coin} \in\{0, \ldots, 255\}^{32}\right)\)
 2: $\quad(\hat{\mathbf{b}}$, publicseed $) \leftarrow \operatorname{DecodePk}(p k)$
$\hat{\mathbf{a}} \leftarrow$ GenA(publicseed)
$\mathbf{s}^{\prime} \leftarrow \operatorname{PolyBitRev}($ Sample $($ coin, 0$))$
$\mathbf{e}^{\prime} \leftarrow \operatorname{PolyBitRev}($ Sample(coin, 1))
$\mathbf{e}^{\prime \prime} \leftarrow$ Sample $($ coin, 2)
$\hat{\mathbf{t}} \leftarrow \operatorname{NTT}\left(\mathrm{s}^{\prime}\right)$
$\hat{\mathbf{u}} \leftarrow \hat{\mathbf{a}} \circ \hat{\mathbf{t}}+\operatorname{NTT}\left(\mathbf{e}^{\prime}\right)$
$\mathbf{v} \leftarrow \operatorname{Encode}(\mu)$
$\mathbf{v}^{\prime} \leftarrow \mathrm{NTT}^{-1}(\hat{\mathbf{b}} \circ \hat{\mathbf{t}})+\mathbf{e}^{\prime \prime}+\mathbf{v}$
$h \leftarrow$ Compress(\mathbf{v}^{\prime})
return $c=\operatorname{EncodeC}(\hat{\mathbf{u}}, h)$

```
Algorithm 3 NewHope-CPA-PKE Decryption
    function NEWHOPE-CPA-PKE.DeCrypt \(\left(c \in\{0, \ldots, 255\}^{7 \frac{n}{4}+3 \frac{n}{8}}, s k \in\{0, \ldots, 255\}^{7 \cdot n / 4}\right)\)
        \((\hat{\mathbf{u}}, h) \leftarrow \operatorname{DecodeC}(c)\)
        \(\hat{\mathbf{s}} \leftarrow\) DecodePolynomial \((s k)\)
        \(\mathbf{v}^{\prime} \leftarrow\) Decompress \((h)\)
        \(\mu \leftarrow \operatorname{Decode}\left(\mathbf{v}^{\prime}-\operatorname{NTT}^{-1}(\hat{\mathbf{u}} \circ \hat{\mathbf{s}})\right)\)
        return \(\mu\)
```


CRYSTALS-Kyber-PKE

```
```

Algorithm 4 Kyber.CPAPKE.KeyGen(): key generation

```
```

Algorithm 4 Kyber.CPAPKE.KeyGen(): key generation
Output: Secret key $s k \in \mathcal{B}^{13 \cdot k \cdot n / 8}$
Output: Secret key $s k \in \mathcal{B}^{13 \cdot k \cdot n / 8}$
Output: Secret key $s k \in \mathcal{B}^{13 \cdot k \cdot n / 8}$
Output: Public key $p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}$
Output: Secret key $s k \in \mathcal{B}^{13 \cdot k \cdot n / 8}$
Output: Public key $p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}$
$d \leftarrow \mathcal{B}^{32}$
$d \leftarrow \mathcal{B}^{32}$
$(\rho, \sigma):=\mathrm{G}(d)$
$(\rho, \sigma):=\mathrm{G}(d)$
$N:=0$
$N:=0$
for i from 0 to $k-1$ do
for i from 0 to $k-1$ do
for j from 0 to $k-1$ do
for j from 0 to $k-1$ do
$\hat{\mathbf{A}}[i][j]:=\operatorname{Parse}(\operatorname{XOF}(\rho\|j\| i))$
$\hat{\mathbf{A}}[i][j]:=\operatorname{Parse}(\operatorname{XOF}(\rho\|j\| i))$
end for
end for
end for
end for
for i from 0 to $k-1$ do $\quad \triangleright$ Sample $\mathbf{s} \in R_{q}^{k}$ from B_{η}
for i from 0 to $k-1$ do $\quad \triangleright$ Sample $\mathbf{s} \in R_{q}^{k}$ from B_{η}
$\mathbf{s}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(\sigma, N))$
$\mathbf{s}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(\sigma, N))$
$N:=N+1$
$N:=N+1$
end for
end for
for i from 0 to $k-1$ do
$\mathrm{e}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(\sigma, N)) \quad \triangleright$ Sample $\mathbf{e} \in R_{q}^{k}$ from B_{η}
for i from 0 to $k-1$ do
$\mathrm{e}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(\sigma, N)) \quad \triangleright$ Sample $\mathbf{e} \in R_{q}^{k}$ from B_{η}
$\mathrm{e}[i]:=\mathrm{CBD}_{\eta}(\operatorname{PRF}(\sigma, N))$
$\mathrm{e}[i]:=\mathrm{CBD}_{\eta}(\operatorname{PRF}(\sigma, N))$
$N:=N+1$
$N:=N+1$
end for
end for
$\hat{\mathrm{s}}:=\mathrm{NTT}(\mathrm{s})$
$\hat{\mathrm{s}}:=\mathrm{NTT}(\mathrm{s})$
$\mathbf{t}:=\mathrm{NTT}^{-1}(\hat{\mathbf{A}} \circ \hat{\mathbf{s}})+\mathbf{e}$
$\mathbf{t}:=\mathrm{NTT}^{-1}(\hat{\mathbf{A}} \circ \hat{\mathbf{s}})+\mathbf{e}$
$p k:=\left(\operatorname{Encode}_{d_{t}}\left(\operatorname{Compress}_{q}\left(\mathbf{t}, d_{t}\right)\right) \| \rho\right)$
$p k:=\left(\operatorname{Encode}_{d_{t}}\left(\operatorname{Compress}_{q}\left(\mathbf{t}, d_{t}\right)\right) \| \rho\right)$
$s k:=\operatorname{Encode}_{13}(\hat{\mathbf{s}} \bmod +q)$
$s k:=\operatorname{Encode}_{13}(\hat{\mathbf{s}} \bmod +q)$
$\triangleright p k:=\mathbf{A s}+\mathbf{e}$
$\triangleright p k:=\mathbf{A s}+\mathbf{e}$
return $(p k, s k)$
return $(p k, s k)$
\triangleright Generate matrix $\hat{\mathbf{A}} \in R_{q}^{k \times k}$ in NTT domain
\triangleright Sample $\mathbf{s} \in R_{q}^{k}$ from B_{η}
\triangleright Sample $\mathbf{e} \in R_{q}^{k}$ from B_{η}
$\triangleright s k:=\mathbf{s}$

```
```

 \(\triangleright s k:=\mathbf{s}\)
    ```
```


CRYSTALS-Kyber-PKE

```
Algorithm 5 Kyber.CPAPKE.Enc \((p k, m, r)\) : encryption
Input: Public key \(p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}\)
Input: Message \(m \in \mathcal{B}^{32}\)
Input: Random coins \(r \in \mathcal{B}^{32}\)
Output: Ciphertext \(c \in \mathcal{B}^{d_{u} \cdot k \cdot n / 8+d_{v} \cdot n / 8}\)
    \(N:=0\)
    \(\mathrm{t}:=\) Decompress \(_{q}\left(\operatorname{Decode}_{d_{t}}(p k), d_{t}\right)\)
    \(\rho:=p k+d_{t} \cdot k \cdot n / 8\)
    for \(i\) from 0 to \(k-1\) do
        for \(j\) from 0 to \(k-1\) do
            \(\hat{\mathbf{A}}^{T}[i][j]:=\operatorname{Parse}(\operatorname{XOF}(\rho\|i\| j))\)
        end for
    end for
    for \(i\) from 0 to \(k-1\) do \(\quad \triangleright\) Sample \(\mathbf{r} \in R_{q}^{k}\) from \(B_{\eta}\)
        \(\mathbf{r}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(r, N))\)
        \(N:=N+1\)
    end for
    for \(i\) from 0 to \(k-1\) do \(\quad \triangleright\) Sample \(\mathbf{e}_{1} \in R_{q}^{k}\) from \(B_{\eta}\)
        \(\mathbf{e}_{1}[i]:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(r, N))\)
        \(N:=N+1\)
    end for
    \(e_{2}:=\operatorname{CBD}_{\eta}(\operatorname{PRF}(r, N)) \quad \triangleright\) Sample \(e_{2} \in R_{q}\) from \(B_{\eta}\)
    \(\hat{\mathbf{r}}:=\operatorname{NTT}(\mathbf{r})\)
    \(\mathbf{u}:=\operatorname{NTT}^{-1}\left(\hat{\mathbf{A}}^{T} \circ \hat{\mathbf{r}}\right)+\mathbf{e}_{1}\)
    \(\triangleright \mathbf{u}:=\mathbf{A}^{T} \mathbf{r}+\mathbf{e}_{1}\)
    \(v:=\operatorname{NTT}^{-1}\left(\operatorname{NTT}(\mathbf{t})^{T} \circ \hat{\mathbf{r}}\right)+e_{2}+\operatorname{Decode}_{1}\left(\operatorname{Decompress}_{q}(m, 1)\right) \quad \triangleright v:=\mathbf{t}^{T} \mathbf{r}+e_{2}+\operatorname{Decompress}_{q}(m, 1)\)
    \(c_{1}:=\operatorname{Encode}_{d_{u}}\left(\right.\) Compress \(\left._{q}\left(\mathbf{u}, d_{u}\right)\right)\)
    \(c_{2}:=\operatorname{Encode}_{d_{v}}\left(\operatorname{Compress}_{q}\left(v, d_{v}\right)\right)\)
    return \(c=\left(c_{1} \| c_{2}\right)\)
\(\triangleright c:=\left(\operatorname{Compress}_{q}\left(\mathbf{u}, d_{u}\right), \operatorname{Compress}_{q}\left(v, d_{v}\right)\right)\)
```


CRYSTALS-Kyber-PKE

```
Algorithm 6 Kyber.CPAPKE. \(\operatorname{Dec}(s k, c)\) : decryption
Input: Secret key \(s k \in \mathcal{B}^{13 \cdot k \cdot n / 8}\)
Input: Ciphertext \(c \in \mathcal{B}^{d_{u} \cdot k \cdot n / 8+d_{v} \cdot n / 8}\)
Output: Message \(m \in \mathcal{B}^{32}\)
    1: \(\mathbf{u}:=\) Decompress \(_{q}\left(\operatorname{Decode}_{d_{u}}(c), d_{u}\right)\)
    2: \(v:=\) Decompress \(_{q}\left(\right.\) Decode \(\left._{d_{v}}\left(c+d_{u} \cdot k \cdot n / 8\right), d_{v}\right)\)
3: \(\hat{\mathbf{s}}:=\operatorname{Decode}_{13}(s k)\)
4: \(\left.m:=\operatorname{Encode}_{1}\left(\operatorname{Compress}_{q}\left(v-\operatorname{NTT}^{-1}\left(\hat{\mathbf{s}}^{T} \circ \mathrm{NTT}(\mathbf{u})\right), 1\right)\right) \quad \triangleright m:=\operatorname{Compress}_{q}\left(v-\mathbf{s}^{T} \mathbf{u}, 1\right)\right)\)
5: return \(m\)
```


CRYSTALS-Kyber-PKE Graphically

Notation:

$$
\begin{aligned}
& \boldsymbol{\square} \leftarrow \mathrm{Z}_{7881}[\mathrm{X}] /\left(x^{256}+1\right) \\
& \boldsymbol{\square} \leftarrow\left(\sum_{i=1}^{4}\left(a_{i}-b_{i}\right)\right)^{256} \\
& \boldsymbol{\square} \leftarrow\left(\sum_{i=1}^{4}\left(a_{i}-b_{i}\right)\right)^{256} \\
&\boldsymbol{\square} \in\{0,\lfloor q / 2]\}\}^{256}
\end{aligned}
$$

CRYSTALS-Kyber-PKE Graphically

CRYSTALS-Kyber-PKE Graphically

CRYSTALS-Kyber-PKE on 1 slide

KeyGen()
$\rho \leftarrow\{0,1\}^{256}$
$A \leftarrow \operatorname{XOF}(\rho)$
$\vec{s}, \vec{e} \leftarrow\left(\chi^{256}\right)^{\ell}$
$\vec{t}=\operatorname{Compress}(A \vec{s}+\vec{e}, d t)$
$p k=(\vec{t}, \rho), s k=\vec{s}$
$\operatorname{Dec}(s k, c t)$
$\vec{u} \leftarrow \operatorname{Decompress}\left(\vec{u}, d_{u}\right)$
$v \leftarrow \operatorname{Decompress}\left(v, d_{v}\right)$
$m=\operatorname{Compress}\left(v-\vec{s}^{t} \cdot \vec{u}, 1\right)$

The Fujisaki-Okamoto Transform

- Constructs an IND-CCA2-secure public key encryption scheme from a one-way-secure public key encryption scheme in the classical random oracle model
- Variant by Targhi and Unruh against a quantum adversary in the quantum random oracle model

The Fujisaki-Okamoto Transform

- Constructs an IND-CCA2-secure public key encryption scheme from a one-way-secure public key encryption scheme in the classical random oracle model
- Variant by Targhi and Unruh against a quantum adversary in the quantum random oracle model

Key ideas

- Encapsulate: hash a seed s to get (1) the key and (2) the randomness seed r, and encrypt s using r.
- Decapsulate: decrypt to recover s, and re-encrypt. If the ciphertext is the same, then use the key.
- Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz: A Modular Analysis of the Fujisaki-Okamoto Transformation. TCC (1) 2017.

CRYSTALS-Kyber

```
Algorithm 7 Kyber.CCAKEM.KeyGen()
Output: Public key \(p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}\)
Output: Secret key \(s k \in \mathcal{B}^{\left(13+d_{i}\right) \cdot k \cdot n / 8+96}\)
    \(z \leftarrow \mathcal{B}^{32}\)
    ( \(p k, s k^{\prime}\) ) \(:=\) Kyber.CPAPKE.KeyGen()
    \(s k:=\left(s k^{\prime}\|p k\| \mathrm{H}(p k) \| z\right)\)
    return \((p k, s k)\)
```

```
Algorithm 8 Kyber.CCAKEM.Enc \((p k)\)
```

Algorithm 8 Kyber.CCAKEM.Enc $(p k)$
Input: Public key $p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}$
Input: Public key $p k \in \mathcal{B}^{d_{t} \cdot k \cdot n / 8+32}$
Output: Ciphertext $c \in \mathcal{B}^{d_{u} \cdot k \cdot n / 8+d_{v} \cdot n / 8}$
Output: Ciphertext $c \in \mathcal{B}^{d_{u} \cdot k \cdot n / 8+d_{v} \cdot n / 8}$
Output: Shared key $K \in \mathcal{B}^{32}$
Output: Shared key $K \in \mathcal{B}^{32}$
$m \leftarrow \mathcal{B}^{32}$
$m \leftarrow \mathcal{B}^{32}$
$m \leftarrow \mathrm{H}(m)$
$m \leftarrow \mathrm{H}(m)$
\triangleright Do not send output of system RNG
\triangleright Do not send output of system RNG
: $(\bar{K}, r):=\mathrm{G}(m \| \mathrm{H}(p k))$
: $(\bar{K}, r):=\mathrm{G}(m \| \mathrm{H}(p k))$
: $c:=$ Kyber.CPAPKE.Enc $(p k, m ; r)$
: $c:=$ Kyber.CPAPKE.Enc $(p k, m ; r)$
5: $K:=\mathrm{H}(\bar{K} \| \mathrm{H}(c))$
5: $K:=\mathrm{H}(\bar{K} \| \mathrm{H}(c))$
6: return (c, K)

```
6: return ( \(c, K\) )
```

```
Algorithm 9 KYBER.CCAKEM.Dec \((c, s k)\)
Input: Ciphertext \(c \in \mathcal{B}^{d_{u} \cdot k \cdot n / 8+d_{v} \cdot n / 8}\)
Input: Secret key \(s k \in \mathcal{B}^{\left(13+d_{i}\right) \cdot k \cdot n / 8+96}\)
Output: Shared key \(K \in \mathcal{B}^{32}\)
    \(p k:=s k+13 \cdot k \cdot n / 8\)
    \(h:=s k+\left(13+d_{t}\right) \cdot k \cdot n / 8+32 \in \mathcal{B}^{32}\)
    \(z:=s k+\left(13+d_{t}\right) \cdot k \cdot n / 8+64\)
    \(m^{\prime}:=\) Kyber.CPAPKE.Dec \((\mathbf{s},(\mathbf{u}, v))\)
    \(\left(\bar{K}^{\prime}, r^{\prime}\right):=\mathrm{G}\left(m^{\prime} \| h\right)\)
    : \(c^{\prime}:=\operatorname{Kyber} . \operatorname{CPAPKE} . \operatorname{Enc}\left(p k, m^{\prime}, r^{\prime}\right)\)
    : if \(c=c^{\prime}\) then
        return \(K:=\mathrm{H}\left(\bar{K}^{\prime} \| \mathrm{H}(c)\right)\)
    else
        return \(K:=\mathrm{H}(z \| \mathrm{H}(c))\)
```

- Tight reduction from MLWE in the ROM (if we don't compress the public key)
- Non-tight reduction in the QROM
- Tight reduction in the QROM with non-standard assumption
- Tight reduction from MLWE in the ROM (if we don't compress the public key)
- Non-tight reduction in the QROM
- Tight reduction in the QROM with non-standard assumption
- Failure probability of $<2^{-140}$
- Interesting questions:
- How much of a problem are a few failures?
- How much can an attacker exploit Groven to produce failures?
- Tight reduction from MLWE in the ROM (if we don't compress the public key)
- Non-tight reduction in the QROM
- Tight reduction in the QROM with non-standard assumption
- Failure probability of $<2^{-140}$
- Interesting questions:
- How much of a problem are a few failures?
- How much can an attacker exploit Groven to produce failures?
- Three different parameter set submitted:
- Kyber512: 102 bit of post-quantum security
- Kyber768: 161 bit of post-quantum security
- Kyber1024: 218 bit of post-quantum security

CRYSTAL-Kyber Performances

Kyber512

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

| sk: | 1632 | gen: | 141872 | gen: | 55160 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| pk: | 736 | enc: | 205468 | enc: | 75680 |
| ct: | 800 | dec: | 246040 | dec: | 74428 |

- Cycles counts on one core, without TurboBoost and HyperThreading
- Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.
- However, only 32-bytes for X25519 pk and ct

CRYSTAL-Kyber Performances

Kyber768

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

| sk: | 2400 | gen: | 243004 | gen: | 85472 |
| :--- | ---: | :--- | ---: | :--- | ---: |
| pk: | 1088 | enc: | 332616 | enc: | 112600 |
| ct: | 1152 | dec: | 394424 | dec: | 108904 |

- Cycles counts on one core, without TurboBoost and HyperThreading
- Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.
- However, only 32-bytes for X25519 pk and ct

CRYSTAL-Kyber Performances

Kyber1024
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

- Cycles counts on one core, without TurboBoost and HyperThreading
- Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.
- However, only 32-bytes for X25519 pk and ct

Error Distributions

- Binomial distribution
- Sample $a_{1}, \ldots, a_{\eta}, b_{1}, \ldots, b_{\eta} \leftarrow\{0,1\}$ and output $\sum_{i}\left(a_{i}-b_{i}\right)$
- Used by NewHope with $\eta=8$, CRYSTALS-Kyber with parameter $\eta=5,4,3$, LIMA with parameter $\eta=20$,
- Approximation Gaussian sampling (FrodoKEM)

| | σ | Probability of (in multiples of 2^{-15}) | | | | | | | | | | | | Rényi | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 | ± 1 | ± 2 | ± 3 | ± 4 | ± 5 | ± 6 | ± 7 | ± 8 | | ± 10 | ± 11 | order | divergence |
| χ Frodo-640 | 2.75 | 9456 | 8857 | 7280 | 5249 | 3321 | 1844 | 898 | 384 | 144 | 47 | 13 | 3 | 500.0 | 0.72×10^{-4} |
| $\chi_{\text {Frodo-976 }}$ | 2.3 | 11278 | 10277 | 7774 | 4882 | 2545 | 1101 | 396 | 118 | 29 | 6 | 1 | | 500.0 | 0.14×10^{-4} |

- Bounded Discrete Gaussian sampling (Ding Key Exchange, LOTUS)
- Often Rényi-divergence-based justification based on [BLRSSS'18]

Other Submissions

| Almacrypt Workshop | | Post-Quantum Crypto Lounge -SA \times | | Estimate all the (LWE, NTRU) scher \times | | + | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\leftarrow \rightarrow$ C थ | | (1) https://www.safecrypto.eu/pqclounge/ | | | | | | $\cdots \vee \sim$ | | 三 |
| Home About SA | FEcrypto | More Information O | Outcomes | News and Events | Post-Quantur | Crypto Lounge | Q | | | |
| Ramstake Zip file | Alan Szepieniec | | Lattice | Standard | KEM | Round 1 | | CCA | | |
| Odd Manhattan Zip file | Thomas Plantard | | Lattice | Standard | Encryption | Round 1 | | CPA | Not CCA secure-*patched* | |
| NTRU Prime Zip file | Daniel J. Bernstein /Chitchanok Chuengsatiansup /Tanja Lange /Christine van Vredendaal | | Lattice | Ring | KEM | Round 1 | | CCA2 | | |
| Three Bears
 Zip file | Mike Hamburg | | Lattice | Module | KEM | Round 1 | | CCA | | |
| CRYSTALS-
 KYBER
 Zip file | Peter Schwabe /Roberto Avanzi /Joppe Bos /Leo Ducas /Eike Kiltz /Tancrede Lepoint/Vadim Lyubashevsky /John M. Schanck /Gregor Seiler /Damien Stehle | | Lattice | Module | KEM | Round 1 | | CCA2 | Concerns
 surrounding
 proof of IND-CPA
 security | |
| LOTUS
 Zip file | Le Trieu Phong/Takuya Hayashi /Yoshinori Aono /Shiho Moriai | | Lattice | Standard | KEM
 Encryption | Round 1 | | CCA2 | CCA attack-*patched* | |
| NTRUEncrypt
 Zip flie | Zhenfei Zhang /Cong Chen /Jeffrey Hoffstein /William Whyte | | Lattice | Ring | KEM
 Encryption | Round 1 | | CCA2 | | |
| pqNTRUsign Zip file | Zhenfei Zhang /Cong Chen /Jeffrey Hoffstein /William Whyte | | Lattice | Ring
 Module | Signature | Round 1 | | EUF-CMA | Vulnerable to CMA attack *patched* | |
| SABER
 Zip file | Jan-Pieter D'Anvers /Angshuman Karmakar / Sujoy Sinha Roy /Frederik Vercauteren | | Lattice | Module | KEM | Round 1 | | CCA | | |

Other Submissions

Other Submissions

- "We expect the difficulty of this problem to be similar to the traditional problem over cyclotomic rings."

Other Submissions

| Almacrypt Workshop | | Post-Quantum Crypto Lounge - $\mathrm{SA}^{\text {A }} \times$ | | Estimate all the (LWE, NTRU) scher $\times+$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\leftarrow) \mathrm{C}$ 人 | | (i) https://www.safecrypto.eu/pqclounge/ | | | | | | $\cdots \cdots$ | III (1) | 三 |
| Home About SA | FEcrypto | More Information O | Outcomes | News and Events | Post-Quantum Crypto Lounge Q | | | | | |
| Compact LWE
 Zip file | Dongxi Li Jongkil Kim | iu / Nan Li
 Kim /Surya Nepa | Lattice | Standard | Encryption | Round 1 | ATTACKED | CCA2 | Secret key can be recovered from ciphertext | |
| Ding Key Exchange Zip file | Jintai Din /Xinwei | g/Tsuyoshi Takagi Gao /Yuntao Wang | Lattice | Ring | KEM | Round 1 | | CPA | | |
| KINDI
 Zip file | Rachid El | Bansarkhani | Lattice | Ring | KEM
 Encryption | Round 1 | | CCA | | |
| Lizard
 Zip file | Jung Hee
 /Joohee L
 /Yongsoo
 /Dongwoo
 /Seong-M
 /Jeongsu
 Haeryong
 /Kimoon
 Lee | Cheon / Sangjoon Park Lee /Duhyeong Kim Song /Seungwan Hong o Kim /Jinsu Kim Min Hong /Aaram Yun Kim
 Park /Eunyoung Choi kim /Jun-Sub Kim /Jieun | Lattice | Standard, Ring | KEM
 Encryption | Round 1 | | CCA2 | | |
| Round2
 Zip file | Oscar Gar Zhang /Sa /Ronald R /Jose-Luis | rcia-Morchon /Zhenfei Sauvik Bhattacharya Rietman /Ludo Tolhuizen is Torre-Arce | Lattice | Standard, Ring | KEM
 Encryption | Round 1 | | CCA | Concerns surrounding proof of the INDCPA security | |
| LIMA
 Zip file | Nigel P. St
 /Yehuda Li
 Orsini /Va
 Paterson | Smart/Martin R. Albrecht Lindell /Emmanuela Valery Osheter /Kenny /Guy Peer | Lattice | Ring | KEM
 Encryption | Round 1 | | CCA | Concerns
 surrounding
 rejection
 sampling analysis
 - patch proposed | |

Other Submissions

Other Submissions

(Middle Product (MP)
$\quad\left(a \odot_{n} s\right)=\left\lfloor\left(a \cdot s \bmod x^{2 n-1} /\left(x^{n}-1\right)\right)\right] \in Z_{q}^{<n}[x]$

Other Submissions

Other Submissions

Some Implementation Considerations

Increasing Security in CRYSTALS-Kyber

```
#ifndef KYBER_K
#define KYBER_K 3 /* Change this for different security strengths */
#endif
/* Don't change parameters below this line */
#define KYBER_N 256
#define KYBER_Q 7681
#if (KYBER_K == 2) /* Kyber512 */
#define KYBER_ETA 5
#elif (KYBER_K == 3) /* Kyber768 */
#define KYBER_ETA 4
#elif (KYBER_K == 4) /*KYBER1024 */
#define KYBER_ETA 3
#else
#error "KYBER_K must be in {2,3,4}"
#endif
```

```
/****************************************************
* Name: polyvec_ntt
*
* Description: Apply forward NTT to all elements of a vector of polynomials
*
* Arguments: - polyvec *r: pointer to in/output vector of polynomials
******************************************************/
void polyvec_ntt(polyvec *r)
{
    int i;
    for(i=0;i<KYBER_K;i++)
    poly_ntt(&r->vec[i]);
}
```


Side-Channel Countermeasures

- Most implementations submitted to NIST are constant-time
- Need more research against fault attacks and DCA-like attacks

Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signatures

Thomas Espitau ${ }^{4}$, Pierre-Alain Fouque ${ }^{2}$,
Benoit Gérard ${ }^{1}$, and Mehdi Tibouchi ${ }^{3}$

Side-Channel Attacks on BLISS Lattice-Based Signatures

Exploiting Branch Tracing Against strongSwan and Electromagnetic Emanations in Microcontrollers

Thomas Espitau
UPMC
France
thomas.espitau@lip6.fr
Benoît Gérard
DGA.MI
France benoit.gerard@irisa.fr

Pierre-Alain Fouque
Université de Rennes I
France
pierre-alain.fouque@univ-rennes1.fr
Mehdi Tibouchi
NTT Corporation Japan
tibouchi.mehdi@lab.ntt.co.jp

Attacking Decryption Failures

NIST API for KEM:
int crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk)

Question

What happens to ss is decryption fails?

Cleaning ss

- NTRUPrime

\#endif
hide(checkcstr,maybek,sk,r);
result = verify(cstr, checkcstr);
for (i = 0;i < 32;++i) k[i] = maybek[i] \& ~result;
return result;

Cleaning ss

- NTRUPrime

\#endif
hide(checkcstr,maybek,sk,r);
result = verify(cstr, checkcstr);
for (i = 0;i<32;++i) k[i] = maybek[i] \& ~result;
return result;

- CRYSTALS-Kyber

```
fail = verify(ct, cmp, KYBER_CIPHERTEXTBYTES);
sha3_256(kr+KYBER_SYMBYTES, ct, KYBER_CIPHERTEXTBYTES);
cmov(kr, sk+KYBER_SECRETKEYBYTES-KYBER_SYMBYTES, KYBER_SYMBYTES, fail);
/* overwrite coins in kr with H(c)
/* Overwrite pre-k with z on
re-encryption failure */
```


Cleaning ss

- NTRUPrime
\#endif
hide(checkcstr,maybek,sk,r);
result = verify(cstr, checkcstr);
for (i = 0;i<32;++i) k[i] = maybek[i] \& ~result;
return result;
- CRYSTALS-Kyber
fail = verify(ct, cmp, KYBER_CIPHERTEXTBYTES);
sha3_256(kr+KYBER_SYMBYTES, ct, KYBER_CIPHERTEXTBYTES);
cmov(kr, sk+KYBER_SECRETKEYBYTES-KYBER_SYMBYTES, KYBER_SYMBYTES, fail);
- OddManhattan and LOTUS were not cleaning the buffer
- We essentially get a decryption oracle...
- Secret key can be recovered in polynomial time!
- Demo.

Conclusion

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519
- CRYSTALS-Kyber768 is a great candidate: stable theory, great performance and security

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519
- CRYSTALS-Kyber768 is a great candidate: stable theory, great performance and security
- If you don't care about public-key size, you can also use McEliece

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519
- CRYSTALS-Kyber768 is a great candidate: stable theory, great performance and security
- If you don't care about public-key size, you can also use McEliece

Signatures:

- If you (really) know what you are doing and can handle a state, use forward-secure stateful hash-based signatures

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519
- CRYSTALS-Kyber768 is a great candidate: stable theory, great performance and security
- If you don't care about public-key size, you can also use McEliece

Signatures:

- If you (really) know what you are doing and can handle a state, use forward-secure stateful hash-based signatures
- If you can be slow, large, and can handle complex implementation, you can use stateless hash-based signatures

My Personal View on Post-Quantum Crypto

- Worst-case to average-case reduc.: soundness of constructions
- More work needed on security estimations

Encryption and KEMs:

- Combine with pre-quantum crypto, e.g., X25519
- CRYSTALS-Kyber768 is a great candidate: stable theory, great performance and security
- If you don't care about public-key size, you can also use McEliece

Signatures:

- If you (really) know what you are doing and can handle a state, use forward-secure stateful hash-based signatures
- If you can be slow, large, and can handle complex implementation, you can use stateless hash-based signatures
- Otherwise, combine Ed25519 with CRYSTALS-Dilithium

Some avenues of work

- Module-LWE have only been used in public key encryption and signatures so far. It could be interesting to look at new applications (e.g., attribute-based encryption, fully homomorphic encryption)?
- Failures and quantum adversaries?
- Quantum speed-ups for enumeration or sieving
- Are there ideas proposed in code-based submissions or multivariate-based submissions we can use?
- Attack Ring-LWE challenges!
http://web.eecs.umich.edu/~cpeikert/ rlwe-challenges/

Implementations

- Module-LWE makes possible to create highly optimized SW or HW multiplier that works for many security levels
- Need work on impact of side-channel countermeasures (fault, masking, etc.)
- Systematic implementation of the Fujisaki-Okamoto transform

Help Verify Parameter Estimator

M Challenges for Learning With $\mathrm{E} \times$ Almacrypt Workhop $\quad \times \quad$ Estimate all the (LWE, NTRU) scher $\times+$
 \leftarrow C (i) hittps://estimate-all-the-Iwe-ntru-schemes.github.io/docs/ 国
 Estimate all the \{LWE, NTRU\} schemes!

Complexity estimates for running the primal-uSVP and dual attacks against all LWE-based, and the primal-uSVP attack against all NTRU-based, Round 1 schemes proposed as part of the PQC process run by NIST. We make use of the [APS15] estimator. The code for generating this table is available on Github, as well as the paper. Clicking on a particular estimate cell in the table will provide with stand-alone Sagemath code for reproducing the estimate.

Below, we provide LWE-equivalent parameters, where $n=$ LWE secret dimension, $\mathrm{k}=$ MLWE rank (if ony), $\mathrm{q}=$ modulo, $\sigma=$ standard deviation of the error, $Z_{\mathrm{q}} \prime(\phi)$ is the ring (if any). For NTRU schemes we provide $\|$ fll, $\|g\|=$ lengths of the short polynomials. If you spot a mistake in a parameter set or cost model, please feel free to open a ticket or to make a pull-request.

Thank you. Any questions?

https://tlepoint.github.io

Interesting Links

- NIST Post-Quantum Cryptography https://nist.gov/pqcrypto
- Post-Quantum Cryptography Lounge https://www.safecrypto.eu/pqclounge/
- libpqcrypto
https://libpqcrypto.org
- Open Quantum Safe https: / / openquantumsafe.org
- Estimate all the \{LWE, NTRU\} schemes! https://estimate-all-the-lwe-ntru-schemes. github.io/
- CRYSTALS website https://pq-crystals.org

