
Algorithmic of LWE-based submissions
to NIST Post-Quantum Standardization Effort

Tancrède Lepoint

March 21, 2018

SRI International

Outline

Small break :)

1. Introduction

2. SIS and LWE

3. Public-Key Encryption and Signatures

4. Adding Structure

5. A Few Submissions to NIST

6. Some Implementation Considerations

7. Conclusion

1

Introduction

Lattices in Antoine’s Landscape

2

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/ 3

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/ 3

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/ 3

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/
3

https://www.safecrypto.eu/pqclounge/

Lattices in NIST Post-Quantum Standardization Effort

https://www.safecrypto.eu/pqclounge/
3

https://www.safecrypto.eu/pqclounge/

Lattices (Quick Reminders)

x

y

A lattice L is a discrete subgroup of
a finite-dimensional Euclidean vector
space.

g⃗1 g⃗2

b⃗1

b⃗2

G = (⃗g1, g⃗2): good basis of L
B = (⃗b1, b⃗2): bad basis of L

G→ B: randomization
B→ G: lattice reduction

4

Lattices (Quick Reminders)

x

y

A lattice L is a discrete subgroup of
a finite-dimensional Euclidean vector
space.

g⃗1 g⃗2

b⃗1

b⃗2

G = (⃗g1, g⃗2): good basis of L
B = (⃗b1, b⃗2): bad basis of L

G→ B: randomization
B→ G: lattice reduction

4

Lattices (Quick Reminders)

x

y

A lattice L is a discrete subgroup of
a finite-dimensional Euclidean vector
space.

g⃗1 g⃗2

b⃗1

b⃗2

G = (⃗g1, g⃗2): good basis of L
B = (⃗b1, b⃗2): bad basis of L

G→ B: randomization
B→ G: lattice reduction

4

Worst-Case to Average-Case Reduction

5

Worst-Case to Average-Case Reduction (Credit: D. Micciancio)

Quotes from Ajtai’s paper [Ajtai’96]

• “cryptography […] generation of a specific instance of a problem
in NP which is thought to be difficult”

• “NP-hard problems”
• “very famous questions (e.g., factorization)”

“Unfortunately, ‘difficult to solve’ means […] in the worst case”

• “no guidance how to create [a hard instance]”
• “possible solution”

1. “find a set of randomly generated problems”, and
2. “show that if there is an algorithm which [works] with a positive

probability, there is also an algorithm that solves the famous
problem in the worst case”

• “In this paper we give such a class of random problems”

6

An Example: Discrete Logarithm Self-Reducibility

We use a similar property in cryptanalysis: discrete logarithm
self-reducibility

[Joux-Lercier’2002] (citing [LaMacchia-Odlyzko’91])

7

An Example: Discrete Logarithm Self-Reducibility

We use a similar property in cryptanalysis: discrete logarithm
self-reducibility

• Goal. Let p be a prime, g ∈ Z×p generator of (prime order
sub-)group G = {gi | i ∈ Z}, input h = gi. Find i mod |G|.

• Key idea. Given g, h ∈ G, compute g′ = ga and h′ = hab for
random a, b ∈ Z×q .

• g′, h′ almost uniformly random
• h′ = hab = (gi)ab = (g′)ib

Finding discrete logarithm of h′ wrt base point g′ allows to find
that of hwrt g.

7

This Talk

• SIS and LWE: the building blocks for lattice-based cryptography

• Regev’s Encryption Scheme and Key Encapsulation Mechanism

• Ring and Module-LWE

• Specifications of real NIST candidates

• Some comments on noise errors and implementations choices

8

SIS and LWE

x

y

9

How did I draw this picture?

9

Matrix representation

\foreach \x in {-10,-9,...,10} {
\foreach \y in {-10,-9,...,10} {

\node[fill,inner sep=0pt, minimum size=3pt,
circle] at ($(2*\x+1.4*\y,2*\y+\x)$) {};

}
}

L = Im

(
2 1.4
1 2

)

10

Matrix representation

\foreach \x in {-10,-9,...,10} {
\foreach \y in {-10,-9,...,10} {

\node[fill,inner sep=0pt, minimum size=3pt,
circle] at ($(2*\x+1.4*\y,2*\y+\x)$) {};

}
}

L = Im

(
2 1.4
1 2

)

10

Construction of q-ary lattice (Primal)

Let q be a prime integer and n < m two integer parameters.

The matrix A ∈ Zm×n
q spans the q-ary lattice:

Λq(A) = {⃗x ∈ Zm | ∃⃗y ∈ Znq, x⃗ = A⃗y mod q}
= A · Znq + qZm

Assuming A is full-rank:

• dim(Λq(A)) = m

• vol(Λq(A)) = qm−n

11

Construction of q-ary lattice (Dual)

Let q be a prime integer and n < m two integer parameters.

The matrix At ∈ Zn×m
q is the parity-check of the lattice:

Λ⊥
q (A

t) = {⃗x ∈ Zm | At⃗x ≡ 0 mod q}
= ker(⃗x 7→ At⃗x mod q)

Assuming A is full-rank:

• dim(Λ⊥
q (A)) = m

• vol(Λ⊥
q (A)) = qn

12

The Short Integer Solution Problem (SIS)

Definition (SIS Assumption)
Given a randommatrix A, finding a small non-zero x⃗ ∈ Znq such that
A⃗x ≡ 0 mod q is hard.

Lattice formulation

Solving Approx-SVP in Λ⊥
q (A) is hard.

Worst-case to average-case connection due in [Ajtai’96].

13

Graphical Representation of SIS

× =

0

0

0

0

0

• Finding a solution x⃗ is easy
• Finding a non-zero solution x⃗ is easy
• Finding a small non-zero solution x⃗ can be hard

14

Graphical Representation of SIS

× =

0

0

0

0

0

• Finding a solution x⃗ is easy

• Finding a non-zero solution x⃗ is easy
• Finding a small non-zero solution x⃗ can be hard

14

Graphical Representation of SIS

× =

0

0

0

0

0

• Finding a solution x⃗ is easy
• Finding a non-zero solution x⃗ is easy

• Finding a small non-zero solution x⃗ can be hard

14

Graphical Representation of SIS

× =

0

0

0

0

0

• Finding a solution x⃗ is easy
• Finding a non-zero solution x⃗ is easy
• Finding a small non-zero solution x⃗ can be hard

14

Collision Resistant Hash Function from SIS

Letm≫ n log q.

fA : {0, 1}m → Znq
x⃗ 7→ A⃗x mod q

.

SIS⇒ Collision Resistant Hashing (and One-Way Function)

• Collision must exist whenm > n log q

• Finding collision is as hard as SIS

15

The Learning With Error problem (LWE) [Regev’05]

16

The Learning With Error problem (LWE) [Regev’05]

Let χ be a distribution of small errors≪ q.

Definition (Decisional LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

distinguishing (A, A⃗s+ e⃗) from uniform is hard.

Definition (Search LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

Both problems are easily proved equivalent.

Lattice formulation
Solving BDD in Λq(A) is hard.

Worst-case to average-case connection due to [Regev’05].

17

The Learning With Error problem (LWE) [Regev’05]

Let χ be a distribution of small errors≪ q.

Definition (Decisional LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

distinguishing (A, A⃗s+ e⃗) from uniform is hard.

Definition (Search LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

Both problems are easily proved equivalent.

Lattice formulation
Solving BDD in Λq(A) is hard.

Worst-case to average-case connection due to [Regev’05].

17

The Learning With Error problem (LWE) [Regev’05]

Let χ be a distribution of small errors≪ q.

Definition (Decisional LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

distinguishing (A, A⃗s+ e⃗) from uniform is hard.

Definition (Search LWE)

For A← Zm×n
q , s⃗← Znq, and e⃗← χm,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

Both problems are easily proved equivalent.

Lattice formulation
Solving BDD in Λq(A) is hard.

Worst-case to average-case connection due to [Regev’05].
17

Graphical Representation of LWE

× + =

18

(One-bit) Secret-Key Encryption from LWE

Keygen: sk = s⃗← $

Encrypt: × + + m =

a⃗← Zn
q

e⃗← χ

ct = (⃗a, b = a⃗t ·
s⃗+ e⃗+⌊q/2⌋ ·m)

Decrypt: − × ≈ m

w = b− a⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

19

(One-bit) Secret-Key Encryption from LWE

Keygen: sk = s⃗← $

Encrypt: × + + m =

a⃗← Zn
q

e⃗← χ

ct = (⃗a, b = a⃗t ·
s⃗+ e⃗+⌊q/2⌋ ·m)

Decrypt: − × ≈ m

w = b− a⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

19

(One-bit) Secret-Key Encryption from LWE

Keygen: sk = s⃗← $

Encrypt: × + + m =

a⃗← Zn
q

e⃗← χ

ct = (⃗a, b = a⃗t ·
s⃗+ e⃗+⌊q/2⌋ ·m)

Decrypt: − × ≈ m

w = b− a⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

19

What’s “small”?

• Usually a discrete Gaussian distribution of width s = αq for error
rate α < 1

• Define the Gaussian function

ρs(⃗x) = exp(−π∥⃗x∥2/s2)

• The continuous Gaussian distribution has probability density
function

f(⃗x) = ρs(⃗x)/
∫
Rn
ρs(⃗z)d⃗z = ρs(⃗x)/sn .

20

Reductions

• Parameters: integer n, integer modulus q, error ’rate’ α (s = qα)

Worst-case SIVP≤ Search-LWE [Regev’05]

One reduction for best known parameters: any q ≥
√
n/α

Search-LWE≤ Decision-LWE

• Messy, many reductions for different q’s
• Any prime q = poly(n) [Regev’05]
• Any “somewhat smooth” q = p1 · · · pt, large p′i s [Peikert’09]
• Any q = pe [ACPS’09,MM’11,MP’12]
• Any q via ’modulus switching’ (increases α) [BLPRS’13]

• Increasing q, α yields a weaker ultimate hardness guarantee

21

Public-Key Encryption

Let’s encrypt (one bit)! [Regev’05,Lindner-Peikert’11]

Using a systemic-normal form, one can assume that s⃗← χn is small
as well. Takem = n.

Keygen: × + =

e⃗← χm

sk = s⃗← χn

pk = (A, A⃗s+ e⃗)

Encrypt:

×

+

=

t⃗← χn

e, f← χn × χ

u⃗ = t⃗tA+ e
v = t⃗tb⃗+ f+ ⌊q/2⌋m

Decrypt:

×

−1

≈

w = v− u⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

22

Let’s encrypt (one bit)! [Regev’05,Lindner-Peikert’11]

Using a systemic-normal form, one can assume that s⃗← χn is small
as well. Takem = n.

Keygen: × + =

e⃗← χm

sk = s⃗← χn

pk = (A, A⃗s+ e⃗)

Encrypt:

×

+

=

t⃗← χn

e, f← χn × χ

u⃗ = t⃗tA+ e
v = t⃗tb⃗+ f+ ⌊q/2⌋m

Decrypt:

×

−1

≈

w = v− u⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

22

Let’s encrypt (one bit)! [Regev’05,Lindner-Peikert’11]

Using a systemic-normal form, one can assume that s⃗← χn is small
as well. Takem = n.

Keygen: × + =

e⃗← χm

sk = s⃗← χn

pk = (A, A⃗s+ e⃗)

Encrypt:

×

+

=

t⃗← χn

e, f← χn × χ

u⃗ = t⃗tA+ e
v = t⃗tb⃗+ f+ ⌊q/2⌋m

Decrypt:

×

−1

≈

w = v− u⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

22

Let’s encrypt (one bit)! [Regev’05,Lindner-Peikert’11]

Using a systemic-normal form, one can assume that s⃗← χn is small
as well. Takem = n.

Keygen: × + =

e⃗← χm

sk = s⃗← χn

pk = (A, A⃗s+ e⃗)

Encrypt:

×

+

=

t⃗← χn

e, f← χn × χ

u⃗ = t⃗tA+ e
v = t⃗tb⃗+ f+ ⌊q/2⌋m

Decrypt:

×

−1

≈

w = v− u⃗t⃗s
µ = ⌊ 2qw⌋ mod 2

22

Key Encapsulation Mechanism

23

Motivation: TLS

24

Frodo-PKE

25

FrodoKEM Sizes

• FrodoKEM-640: n = 640, q = 32768, m̄ = n̄ = 8

• FrodoKEM-946: n = 946, q = 65536, m̄ = n̄ = 8

26

Adding Structure

Key Ideas: Ring-LWE and Module-LWE

anticyclic rotations

27

Key Ideas: Ring-LWE and Module-LWE

27

Wishful thinking (Credit slide: C. Peikert)


...
ai
...

 ⋆


...
s
...

+


...
ei
...

 =


...
bi
...


• Get n pseudorandom
scalars from just one
cheap ⋆ operation?

Question

• How to define the product ⋆ so that (ai, bi) is pseudorandom?

• Careful! With small error, coordinate-wise multiplication is
insecure!

Answer

• ⋆ = multiplication in a polynomial ring: e.g., Zq[x]/(xn + 1). Fast
and practical with FFT: n log n operations mod q.

• Same ring structures used in NTRU cryptosystem [HPS’98], & in
compact one-way / CR hash functions [Mic’02,PR’06,LM’06,…]

28

Wishful thinking (Credit slide: C. Peikert)


...
ai
...

 ⋆


...
s
...

+


...
ei
...

 =


...
bi
...


• Get n pseudorandom
scalars from just one
cheap ⋆ operation?

Question

• How to define the product ⋆ so that (ai, bi) is pseudorandom?

• Careful! With small error, coordinate-wise multiplication is
insecure!

Answer

• ⋆ = multiplication in a polynomial ring: e.g., Zq[x]/(xn + 1). Fast
and practical with FFT: n log n operations mod q.

• Same ring structures used in NTRU cryptosystem [HPS’98], & in
compact one-way / CR hash functions [Mic’02,PR’06,LM’06,…]

28

Wishful thinking (Credit slide: C. Peikert)


...
ai
...

 ⋆


...
s
...

+


...
ei
...

 =


...
bi
...


• Get n pseudorandom
scalars from just one
cheap ⋆ operation?

Question

• How to define the product ⋆ so that (ai, bi) is pseudorandom?

• Careful! With small error, coordinate-wise multiplication is
insecure!

Answer

• ⋆ = multiplication in a polynomial ring: e.g., Zq[x]/(xn + 1). Fast
and practical with FFT: n log n operations mod q.

• Same ring structures used in NTRU cryptosystem [HPS’98], & in
compact one-way / CR hash functions [Mic’02,PR’06,LM’06,…]

28

Ring Learning With Errors [LPR’10] (Slide credit: C. Peikert)

• Let R be a ring, often R = Z[x]/(f(x)) for irreducible f of degree n
(or R = OK).
Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry).

• Integer modulus q defining Rq = R/qR and R∨q = R∨/qR∨

• Gaussian error of width≈ αq over R∨

Definition (Search R-LWE)
Find secret ring element s ∈ R∨q , givenm independent samples
(ai, bi = ai · s+ ei)

Definition (Decisional R-LWE)
Distinguish (ai, bi) from uniform (ai, bi) ∈ Rq × R∨q

29

Ring Learning With Errors [LPR’10] (Slide credit: C. Peikert)

• Let R be a ring, often R = Z[x]/(f(x)) for irreducible f of degree n
(or R = OK).
Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry).

• Integer modulus q defining Rq = R/qR and R∨q = R∨/qR∨

• Gaussian error of width≈ αq over R∨

Definition (Search R-LWE)
Find secret ring element s ∈ R∨q , givenm independent samples
(ai, bi = ai · s+ ei)

Definition (Decisional R-LWE)
Distinguish (ai, bi) from uniform (ai, bi) ∈ Rq × R∨q

29

Ring Learning With Errors [LPR’10] (Slide credit: C. Peikert)

• Let R be a ring, often R = Z[x]/(f(x)) for irreducible f of degree n
(or R = OK).
Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry).

• Integer modulus q defining Rq = R/qR and R∨q = R∨/qR∨

• Gaussian error of width≈ αq over R∨

Definition (Search R-LWE)
Find secret ring element s ∈ R∨q , givenm independent samples
(ai, bi = ai · s+ ei)

Definition (Decisional R-LWE)
Distinguish (ai, bi) from uniform (ai, bi) ∈ Rq × R∨q

29

Ring Learning With Errors [LPR’10] (Slide credit: C. Peikert)

• Let R be a ring, often R = Z[x]/(f(x)) for irreducible f of degree n
(or R = OK).
Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry).

• Integer modulus q defining Rq = R/qR and R∨q = R∨/qR∨

• Gaussian error of width≈ αq over R∨

Definition (Search R-LWE)
Find secret ring element s ∈ R∨q , givenm independent samples
(ai, bi = ai · s+ ei)

Definition (Decisional R-LWE)
Distinguish (ai, bi) from uniform (ai, bi) ∈ Rq × R∨q

29

Ring Learning With Errors [LPR’10] (Slide credit: C. Peikert)

• Let R be a ring, often R = Z[x]/(f(x)) for irreducible f of degree n
(or R = OK).
Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry).

• Integer modulus q defining Rq = R/qR and R∨q = R∨/qR∨

• Gaussian error of width≈ αq over R∨

Definition (Search R-LWE)
Find secret ring element s ∈ R∨q , givenm independent samples
(ai, bi = ai · s+ ei)

Definition (Decisional R-LWE)
Distinguish (ai, bi) from uniform (ai, bi) ∈ Rq × R∨q

29

Hardness of Ring-LWE [PeiRegSte’17]

Reduction

worst-case (nc/α)-SIVP ≤ worst-case Ring-LWEq,α
on ideal lattices in R

(quantum, any R = OK, any q ≥ nc−1/2/α)

Which ring to use?

• Previous result gives no guidance
• There exists no nontrivial relation between lattice problems over
different rings

• Progress on Ideal-SIVP
• Quantum poly-time exp(Õ(

√
n))-Ideal-SIVP in prime power

cyclotomics [Ber14,CGS14,BS16,CDPR16,CDW17]
• Classical quasi-poly-time in multiquadratic fields
[Ber14,BBdVLvV’17]

30

Hardness of Ring-LWE [PeiRegSte’17]

Reduction

worst-case (nc/α)-SIVP ≤ worst-case Ring-LWEq,α
on ideal lattices in R

(quantum, any R = OK, any q ≥ nc−1/2/α)

Which ring to use?

• Previous result gives no guidance
• There exists no nontrivial relation between lattice problems over
different rings

• Progress on Ideal-SIVP
• Quantum poly-time exp(Õ(

√
n))-Ideal-SIVP in prime power

cyclotomics [Ber14,CGS14,BS16,CDPR16,CDW17]
• Classical quasi-poly-time in multiquadratic fields
[Ber14,BBdVLvV’17] 30

Rings in Literature

What are the typical options for R throughout the literature?

• R = Z[x]/(xn − 1) [HPS’96, Mic’02]

• R = Z[x]/(xn + 1) & cyclotomics [LR’06,ML’06,LPR’10]

• Alternate rings with even less structure like Z[x]/(xp − x− 1)
[BCLvV’16]

• Complex (but still fast!) multiplication

• Module-LWE [LS’15]
• MLWE bridges a gap between LWE and RLWE;
• R = R1 × · · · × Rℓ;
• where each Ri can have a different structure;
• LWE: Ri = Z; RLWE: ℓ = 1;
• Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be
submitted to NIST

31

Rings in Literature

What are the typical options for R throughout the literature?

• R = Z[x]/(xn − 1) [HPS’96, Mic’02]

• R = Z[x]/(xn + 1) & cyclotomics [LR’06,ML’06,LPR’10]

• Alternate rings with even less structure like Z[x]/(xp − x− 1)
[BCLvV’16]

• Complex (but still fast!) multiplication

• Module-LWE [LS’15]
• MLWE bridges a gap between LWE and RLWE;
• R = R1 × · · · × Rℓ;
• where each Ri can have a different structure;
• LWE: Ri = Z; RLWE: ℓ = 1;
• Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be
submitted to NIST

31

Rings in Literature

What are the typical options for R throughout the literature?

• R = Z[x]/(xn − 1) [HPS’96, Mic’02]

• R = Z[x]/(xn + 1) & cyclotomics [LR’06,ML’06,LPR’10]

• Alternate rings with even less structure like Z[x]/(xp − x− 1)
[BCLvV’16]

• Complex (but still fast!) multiplication

• Module-LWE [LS’15]
• MLWE bridges a gap between LWE and RLWE;
• R = R1 × · · · × Rℓ;
• where each Ri can have a different structure;
• LWE: Ri = Z; RLWE: ℓ = 1;
• Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be
submitted to NIST

31

Rings in Literature

What are the typical options for R throughout the literature?

• R = Z[x]/(xn − 1) [HPS’96, Mic’02]

• R = Z[x]/(xn + 1) & cyclotomics [LR’06,ML’06,LPR’10]

• Alternate rings with even less structure like Z[x]/(xp − x− 1)
[BCLvV’16]

• Complex (but still fast!) multiplication

• Module-LWE [LS’15]
• MLWE bridges a gap between LWE and RLWE;
• R = R1 × · · · × Rℓ;
• where each Ri can have a different structure;
• LWE: Ri = Z; RLWE: ℓ = 1;
• Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be
submitted to NIST

31

Rings in Literature

What are the typical options for R throughout the literature?

• R = Z[x]/(xn − 1) [HPS’96, Mic’02]

• R = Z[x]/(xn + 1) & cyclotomics [LR’06,ML’06,LPR’10]

• Alternate rings with even less structure like Z[x]/(xp − x− 1)
[BCLvV’16]

• Complex (but still fast!) multiplication

• Module-LWE [LS’15]
• MLWE bridges a gap between LWE and RLWE;
• R = R1 × · · · × Rℓ;
• where each Ri can have a different structure;
• LWE: Ri = Z; RLWE: ℓ = 1;
• Used in the CRYSTALS crypto suite (Kyber; Dilithium) to be
submitted to NIST

31

Power-of-2 cyclotomic

R = Z[x]/(xn + 1)

• Choosing small errors in the polynomial embedding is
equivalent to selecting small errors in the canonical embedding
(where the actual Ring-LWE problem lies)

• Fast polynomial multiplication using the Fast Fourier Transform
(n log n operations over coefficients mod q)

• No indication that these rings would be insecure; mostwidely
studied, and best understood, rings (along with other cyclotomic
rings) in algebraic number theory

32

Module-LWE

Let R be a ring, q be an integer, and Rq = R/qR. Let χ be a distribution
of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

distinguish (A, A⃗s+ e⃗) from uniform is hard.

Search Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

• For R = Z[x]/(xn + 1) and ℓ = 1, we get Ring-LWE

• For R = Z and ℓ = n, we get LWE

33

Module-LWE

Let R be a ring, q be an integer, and Rq = R/qR. Let χ be a distribution
of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

distinguish (A, A⃗s+ e⃗) from uniform is hard.

Search Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

• For R = Z[x]/(xn + 1) and ℓ = 1, we get Ring-LWE

• For R = Z and ℓ = n, we get LWE

33

Module-LWE

Let R be a ring, q be an integer, and Rq = R/qR. Let χ be a distribution
of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

distinguish (A, A⃗s+ e⃗) from uniform is hard.

Search Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

• For R = Z[x]/(xn + 1) and ℓ = 1, we get Ring-LWE

• For R = Z and ℓ = n, we get LWE

33

Module-LWE

Let R be a ring, q be an integer, and Rq = R/qR. Let χ be a distribution
of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

distinguish (A, A⃗s+ e⃗) from uniform is hard.

Search Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

• For R = Z[x]/(xn + 1) and ℓ = 1, we get Ring-LWE

• For R = Z and ℓ = n, we get LWE

33

Module-LWE

Let R be a ring, q be an integer, and Rq = R/qR. Let χ be a distribution
of small errors. Let k, ℓ be parameter integers.

Decision Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

distinguish (A, A⃗s+ e⃗) from uniform is hard.

Search Module-LWE

For A← Rk×ℓ
q , s⃗← Rℓq, and e⃗← (χn)k,

given (A, A⃗s+ e⃗), finding s⃗ is hard.

• For R = Z[x]/(xn + 1) and ℓ = 1, we get Ring-LWE

• For R = Z and ℓ = n, we get LWE

33

A Few Submissions to NIST

Let’s review some submissions

• FrodoKEM: Key Encapsulation Mechanism based on LWE

• NewHope: Key Encapsulation Mechanism based on Ring-LWE

• CRYSTALS-Kyber: Key Encapsulation Mechanism based on
Module-LWE

• Special mentions of ThreeBears, OddManhattan, Titanium

34

Frodo-PKE

35

NewHope-PKE

36

CRYSTALS-Kyber-PKE

37

CRYSTALS-Kyber-PKE

37

CRYSTALS-Kyber-PKE

37

CRYSTALS-Kyber-PKE Graphically

Keygen:
× + =

Notation:
← Z7681[x]/(x256 + 1)

← (
∑4

i=1(ai − bi))256

← (
∑4

i=1(ai − bi))256

∈ {0, ⌊q/2⌋}256

Encrypt:

×

+

=

Decrypt:

×

−1

≈

38

CRYSTALS-Kyber-PKE Graphically

Keygen:
× + =

Notation:
← Z7681[x]/(x256 + 1)

← (
∑4

i=1(ai − bi))256

← (
∑4

i=1(ai − bi))256

∈ {0, ⌊q/2⌋}256

Encrypt:

×

+

=

Decrypt:

×

−1

≈

38

CRYSTALS-Kyber-PKE Graphically

Keygen:
× + =

Notation:
← Z7681[x]/(x256 + 1)

← (
∑4

i=1(ai − bi))256

← (
∑4

i=1(ai − bi))256

∈ {0, ⌊q/2⌋}256

Encrypt:

×

+

=

Decrypt:

×

−1

≈

38

CRYSTALS-Kyber-PKE on 1 slide

KeyGen()
ρ← {0, 1}256

A← XOF(ρ)
s⃗, e⃗← (χ256)ℓ

t⃗ = Compress(A⃗s+ e⃗, dt)
pk = (⃗t, ρ), sk = s⃗

Enc(pk, m⃗ ∈ {0, 1}256)
t⃗ = Decompress(t, dt)
A⃗← XOF(ρ)
r⃗, e⃗1, e2 ← (χ256)ℓ × (χ256)ℓ × χ256

u⃗ = Compress(⃗rTA+ e⃗T1, du)
v = Compress(⃗rT⃗t+e2+⌊q/2⌋m⃗, dv)
ct = (⃗u, v)

Dec(sk, ct)
u⃗← Decompress(⃗u, du)
v← Decompress(v, dv)
m = Compress(v− s⃗t · u⃗, 1)

39

The Fujisaki-Okamoto Transform

• Constructs an IND-CCA2-secure public key encryption scheme
from a one-way-secure public key encryption scheme in the
classical random oracle model

• Variant by Targhi and Unruh against a quantum adversary in the
quantum random oracle model

Key ideas

• Encapsulate: hash a seed s to get (1) the key and (2) the
randomness seed r, and encrypt s using r.

• Decapsulate: decrypt to recover s, and re-encrypt. If the
ciphertext is the same, then use the key.

• Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz: A Modular
Analysis of the Fujisaki-Okamoto Transformation. TCC (1) 2017.

40

The Fujisaki-Okamoto Transform

• Constructs an IND-CCA2-secure public key encryption scheme
from a one-way-secure public key encryption scheme in the
classical random oracle model

• Variant by Targhi and Unruh against a quantum adversary in the
quantum random oracle model

Key ideas

• Encapsulate: hash a seed s to get (1) the key and (2) the
randomness seed r, and encrypt s using r.

• Decapsulate: decrypt to recover s, and re-encrypt. If the
ciphertext is the same, then use the key.

• Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz: A Modular
Analysis of the Fujisaki-Okamoto Transformation. TCC (1) 2017. 40

CRYSTALS-Kyber

41

CRYSTALS-Kyber Security (Credit Slide: P. Schwabe)

• Tight reduction fromMLWE in the ROM
(if we don’t compress the public key)

• Non-tight reduction in the QROM

• Tight reduction in the QROMwith non-standard assumption

• Failure probability of< 2−140

• Interesting questions:
• Howmuch of a problem are a few failures?
• Howmuch can an attacker exploit Groven to produce failures?

• Three different parameter set submitted:
• Kyber512: 102 bit of post-quantum security
• Kyber768: 161 bit of post-quantum security
• Kyber1024: 218 bit of post-quantum security

42

CRYSTALS-Kyber Security (Credit Slide: P. Schwabe)

• Tight reduction fromMLWE in the ROM
(if we don’t compress the public key)

• Non-tight reduction in the QROM

• Tight reduction in the QROMwith non-standard assumption

• Failure probability of< 2−140

• Interesting questions:
• Howmuch of a problem are a few failures?
• Howmuch can an attacker exploit Groven to produce failures?

• Three different parameter set submitted:
• Kyber512: 102 bit of post-quantum security
• Kyber768: 161 bit of post-quantum security
• Kyber1024: 218 bit of post-quantum security

42

CRYSTALS-Kyber Security (Credit Slide: P. Schwabe)

• Tight reduction fromMLWE in the ROM
(if we don’t compress the public key)

• Non-tight reduction in the QROM

• Tight reduction in the QROMwith non-standard assumption

• Failure probability of< 2−140

• Interesting questions:
• Howmuch of a problem are a few failures?
• Howmuch can an attacker exploit Groven to produce failures?

• Three different parameter set submitted:
• Kyber512: 102 bit of post-quantum security
• Kyber768: 161 bit of post-quantum security
• Kyber1024: 218 bit of post-quantum security

42

CRYSTAL-Kyber Performances

Kyber512

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 1632 gen: 141872 gen: 55160
pk: 736 enc: 205468 enc: 75680
ct: 800 dec: 246040 dec: 74428

• Cycles counts on one core, without TurboBoost and
HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.

• However, only 32-bytes for X25519 pk and ct

43

CRYSTAL-Kyber Performances

Kyber768

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 2400 gen: 243004 gen: 85472
pk: 1088 enc: 332616 enc: 112600
ct: 1152 dec: 394424 dec: 108904

• Cycles counts on one core, without TurboBoost and
HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.

• However, only 32-bytes for X25519 pk and ct

43

CRYSTAL-Kyber Performances

Kyber1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

• Cycles counts on one core, without TurboBoost and
HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963 cycles.

• However, only 32-bytes for X25519 pk and ct

43

Error Distributions

• Binomial distribution
• Sample a1, . . . , aη, b1, . . . , bη ← {0, 1} and output

∑
i(ai − bi)

• Used by NewHope with η = 8, CRYSTALS-Kyber with parameter
η = 5, 4, 3, LIMA with parameter η = 20,

• Approximation Gaussian sampling (FrodoKEM)

• Bounded Discrete Gaussian sampling (Ding Key Exchange,
LOTUS)

• Often Rényi-divergence-based justification based on [BLRSSS’18]

44

Other Submissions

45

Other Submissions

OddManhattan:

• Keygen
pk = (

wi

w1
mod p)i; sk = w1

withwi mod 2 = 1 and ∥w∥1 ≤ (p− 1)/(2b)

• Encrypt
ct = ⟨u, h⟩ mod p

where ∑
i

ui = m mod 2 and ∥u∥∞ ≤ b.

45

Other Submissions

ThreeBears:

• Error distribution χσ2

Output 1 and -1 both with probability σ2/2, otherwise
output 0.

• Integer-MLWE (N ≈ 23120, e = d ∈ [2, 4], σ2 ∈ [1/4, 1])
Distinguish the distributions

(M,Ma+ ϵa) : M← (ZN)e×d; a← χd
σ2 ; ϵa ← χe

σ2

(M, b) : M← (ZN)e×d; b← (ZN)e

• “We expect the difficulty of this problem to be similar to
the traditional problem over cyclotomic rings.”

45

Other Submissions

45

Other Submissions

45

Other Submissions

Titanium:

• Middle Product (MP)

(a⊙n s) = ⌊(a · s mod x2n−1/(xn − 1))⌋ ∈ Z<n
q [x]

• MP-LWE: LWE with middle product

• Reduction from (decision) PLWEf to (decision) MP-LWE of
parameter n, for every monic f of degree nwhose
constant coefficient is coprime with q

45

Other Submissions

45

Other Submissions

45

Some Implementation Considerations

Increasing Security in CRYSTALS-Kyber

46

Side-Channel Countermeasures

• Most implementations submitted to NIST are constant-time

• Need more research against fault attacks and DCA-like attacks

47

Attacking Decryption Failures

NIST API for KEM:

int crypto_kem_dec(unsigned char *ss, const
unsigned char *ct, const unsigned char *sk)

Question
What happens to ss is decryption fails?

48

Cleaning ss

• NTRUPrime

• CRYSTALS-Kyber

• OddManhattan and LOTUS were not cleaning the buffer
• We essentially get a decryption oracle...
• Secret key can be recovered in polynomial time!
• Demo.

49

Cleaning ss

• NTRUPrime

• CRYSTALS-Kyber

• OddManhattan and LOTUS were not cleaning the buffer
• We essentially get a decryption oracle...
• Secret key can be recovered in polynomial time!
• Demo.

49

Cleaning ss

• NTRUPrime

• CRYSTALS-Kyber

• OddManhattan and LOTUS were not cleaning the buffer
• We essentially get a decryption oracle...
• Secret key can be recovered in polynomial time!
• Demo.

49

Conclusion

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519

• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium

50

My Personal View on Post-Quantum Crypto

• Worst-case to average-case reduc.: soundness of constructions
• More work needed on security estimations

Encryption and KEMs:

• Combine with pre-quantum crypto, e.g., X25519
• CRYSTALS-Kyber768 is a great candidate: stable theory, great
performance and security

• If you don’t care about public-key size, you can also use McEliece

Signatures:

• If you (really) know what you are doing and can handle a state,
use forward-secure stateful hash-based signatures

• If you can be slow, large, and can handle complex
implementation, you can use stateless hash-based signatures

• Otherwise, combine Ed25519 with CRYSTALS-Dilithium 50

Some avenues of work

• Module-LWE have only been used in public key encryption and
signatures so far. It could be interesting to look at new
applications (e.g., attribute-based encryption, fully
homomorphic encryption)?

• Failures and quantum adversaries?

• Quantum speed-ups for enumeration or sieving

• Are there ideas proposed in code-based submissions or
multivariate-based submissions we can use?

• Attack Ring-LWE challenges!
http://web.eecs.umich.edu/~cpeikert/
rlwe-challenges/

51

http://web.eecs.umich.edu/~cpeikert/rlwe-challenges/
http://web.eecs.umich.edu/~cpeikert/rlwe-challenges/

Implementations

• Module-LWEmakes possible to create highly optimized SW or
HWmultiplier that works for many security levels

• Need work on impact of side-channel countermeasures (fault,
masking, etc.)

• Systematic implementation of the Fujisaki–Okamoto transform

52

Help Verify Parameter Estimator

53

Thank you. Any questions?

https://tlepoint.github.io

53

https://tlepoint.github.io

Interesting Links

• NIST Post-Quantum Cryptography
https://nist.gov/pqcrypto

• Post-Quantum Cryptography Lounge
https://www.safecrypto.eu/pqclounge/

• libpqcrypto
https://libpqcrypto.org

• Open Quantum Safe
https://openquantumsafe.org

• Estimate all the {LWE, NTRU} schemes!
https://estimate-all-the-lwe-ntru-schemes.
github.io/

• CRYSTALS website
https://pq-crystals.org

54

https://nist.gov/pqcrypto
https://www.safecrypto.eu/pqclounge/
https://libpqcrypto.org
https://openquantumsafe.org
https://estimate-all-the-lwe-ntru-schemes.github.io/
https://estimate-all-the-lwe-ntru-schemes.github.io/
https://pq-crystals.org

