Code Based Cryptography

Alain Couvreur

INRIA & LIX, École Polytechnique

École de Printemps Post Scryptum 2018

Outline

Introduction

2 A bit coding theory

- First definitions
- A difficult problem
- Easy instances
- Code based cryptography
 - McEliece scheme
 - Some examples and proposals

4 Security analysis

- Message recovery attacks
- Key recovery attacks

There is frequently a confusion between:

- Coding theory : resisting to noise;
- Cryptography : resisting to bad persons.

French language is misleading:

• "message codé",

French language is misleading:

• "message codé", we should say message chiffré;

- "message codé", we should say message chiffré;
- "code secret",

- "message codé", we should say message chiffré;
- "code secret", we should say **mot de passe**;

- "message codé", we should say message chiffré;
- "code secret", we should say **mot de passe**;
- "décoder un message",

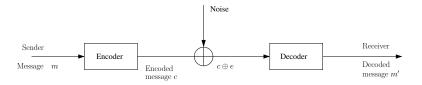
- "message codé", we should say **message chiffré**;
- "code secret", we should say **mot de passe**;
- "décoder un message", we should say déchiffrer if you are the owner of the key and décrypter if you're an eavesdropper.

2 A bit coding theory

- First definitions
- A difficult problem
- Easy instances

Encoders, error correcting codes

Fundamental idea: add redundancy to information.



Definition

An *encoder* is a linear injective map: $\mathbb{F}_{q^k} \hookrightarrow \mathbb{F}_{q^n}$. An *error correcting code*, or *code* is the image of such a map, i.e. a subspace of dimension k of \mathbb{F}_q^n .

Hamming metric

Definition

The Hamming weight of $\boldsymbol{x} \in \mathbb{F}_q^n$ is defined as

$$w_H(\mathbf{x}) \stackrel{\text{def}}{=} |\{i \in \{1, \ldots, n\} \mid x_i \neq 0\}|$$

The Hamming distance on \mathbb{F}_q^n is defined by

$$d_H(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text{def}}{=} |\{i \mid x_i \neq y_i\}| = w_H(\boldsymbol{x} - \boldsymbol{y}).$$

For instance, $d_H((0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 0)) = 2$.

Hamming metric

Definition

The Hamming weight of $\boldsymbol{x} \in \mathbb{F}_q^n$ is defined as

$$w_H(\mathbf{x}) \stackrel{\text{def}}{=} |\{i \in \{1, \ldots, n\} \mid x_i \neq 0\}|$$

The Hamming distance on \mathbb{F}_q^n is defined by

$$d_H(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text{def}}{=} |\{i \mid x_i \neq y_i\}| = w_H(\boldsymbol{x} - \boldsymbol{y}).$$

For instance, $d_H((0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 0)) = 2$.

Decoders

Definition

Let
$$\mathscr{C} \subseteq \mathbb{F}_q^n$$
 and $t \leq n$. A (deterministic) *t*-decoder is a map $\mathcal{D} : \mathbb{F}_q^n \longrightarrow \mathscr{C} \cup \{?\}$ such that $\forall \boldsymbol{c} \in \mathscr{C}$ and all $\boldsymbol{e} \in \mathbb{F}_q^n$ with $w_H(\boldsymbol{e}) \leq t$, we have

$$\mathcal{D}(\boldsymbol{c}+\boldsymbol{e})=\boldsymbol{c}.$$

Decoders

Definition

Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $t \leq n$. A (deterministic) *t*-decoder is a map $\mathcal{D}: \mathbb{F}_q^n \longrightarrow \mathscr{C} \cup \{?\}$ such that $\forall \boldsymbol{c} \in \mathscr{C}$ and all $\boldsymbol{e} \in \mathbb{F}_q^n$ with $w_H(\boldsymbol{e}) \leq t$, we have

 $\mathcal{D}(\boldsymbol{c}+\boldsymbol{e})=\boldsymbol{c}.$

Definition

Let $\mathscr{C} \subseteq \mathbb{F}_q^n$, $t \leq n$ and $0 < \varepsilon < 1$. A probabilistic *t*-decoder of failure probability ε is a map $\mathcal{D} : \mathbb{F}_q^n \longrightarrow \mathscr{C} \cup \{?\}$ such that for a uniformly random $\boldsymbol{c} \in \mathscr{C}$ and a uniformly random $\boldsymbol{e} \in \mathbb{F}_q^n$ of weight *t*, we have

$$\mathbb{P}(\mathcal{D}(\boldsymbol{c}+\boldsymbol{e})=\boldsymbol{c}) \ge 1-\varepsilon.$$

Almost every code is good but...

Shannon Theorem (very informally) asserts that for almost any code \mathscr{C} of dimension k = Rn for some R > 0, there is a probabilistic *t*-decoder with $t = \tau n$ for some $\tau > 0$ (τ depends on R) with failure probability $2^{-O(n)}$.

Almost every code is good but...

Shannon Theorem (very informally) asserts that for almost any code \mathscr{C} of dimension k = Rn for some R > 0, there is a probabilistic *t*-decoder with $t = \tau n$ for some $\tau > 0$ (τ depends on R) with failure probability $2^{-O(n)}$.

But the theorem does not assert the existence of a polynomial time decoder.

Almost every code is good but...

Shannon Theorem (very informally) asserts that for almost any code \mathscr{C} of dimension k = Rn for some R > 0, there is a probabilistic *t*-decoder with $t = \tau n$ for some $\tau > 0$ (τ depends on R) with failure probability $2^{-O(n)}$.

But the theorem does not assert the existence of a polynomial time decoder.

Moreover, we have:

Theorem (Berlekamp, McEliece, Van Tilbørg, 1978)

The following problem is NP-complete.

Problem. (Bounded decoding Problem) Let $\mathscr{C} \subseteq \mathbb{F}_q^n$, $\mathbf{y} \in \mathbb{F}_q^n$ and $t \in \{0, \ldots, n\}$. Decide whether there exists $\mathbf{c} \in \mathscr{C}$ such that $d_H(\mathbf{c}, \mathbf{y}) \leq t$.

Easy instances

• Algebraic coding (with deterministic decoders)

- Reed-Muller Codes;
- Reed-Solomon and alternant codes;
- Algebraic geometry codes;
- etc...

• Probabilistic coding (with probabilistic decoders)

- LDPC codes (Gallager codes);
- Turbo-codes.

Reed–Solomon Codes

Definition

Let x_1, \ldots, x_n be distinct elements of \mathbb{F}_q . The *Reed Solomon code* of dimension k and *support* **x** is:

$$\mathsf{RS}_k(\mathbf{x}) \stackrel{\mathsf{def}}{=} \{ (f(x_1), \ldots, f(x_n)) \mid f \in \mathbb{F}_q[X]_{< k} \}.$$

Generalised Reed–Solomon Codes and Altenant codes

Definition

Let x_1, \ldots, x_n be distinct elements of \mathbb{F}_q and y_1, \ldots, y_n be nonzero elements of \mathbb{F}_q . The generalised Reed Solomon code of dimension k, support x and multiplier y is:

 $\mathsf{GRS}_k(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< k} \}.$

Generalised Reed–Solomon Codes and Altenant codes

Definition

Let x_1, \ldots, x_n be distinct elements of \mathbb{F}_q and y_1, \ldots, y_n be nonzero elements of \mathbb{F}_q . The generalised Reed Solomon code of dimension k, support x and multiplier y is:

$$\mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< k} \}$$

Definition

An Alternant code is a code over \mathbb{F}_q of the form

 $\mathsf{GRS}_k(x, y) \cap \mathbb{F}_q^n$

for some GRS code over \mathbb{F}_{q^m} .

Generalised Reed–Solomon Codes and Altenant codes

Definition

Let x_1, \ldots, x_n be distinct elements of \mathbb{F}_q and y_1, \ldots, y_n be nonzero elements of \mathbb{F}_q . The generalised Reed Solomon code of dimension k, support x and multiplier y is:

$$\mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< k} \}$$

Definition

An Alternant code is a code over \mathbb{F}_q of the form

$$\mathsf{GRS}_k(x, y) \cap \mathbb{F}_q^n$$

for some GRS code over \mathbb{F}_{q^m} .

Most of the families of algebraic codes **are alternant codes** : *Goppa codes, Srivastava codes, BCH codes, etc...*

A. Couvreur

Code Based Crypto

Decoding RS codes – Berlekamp Welch algorithm

Let
$$\boldsymbol{c} = (f(x_1), \ldots, f(x_n)) \in \mathsf{RS}_k(\boldsymbol{x})$$
. Let $\boldsymbol{r} = \boldsymbol{c} + \boldsymbol{e}$ with $d_H(\boldsymbol{r}, \boldsymbol{c}) \leqslant t$.

- **r** is known;
- We aim at computing *c*.

Decoding RS codes - Berlekamp Welch algorithm

Let
$$\boldsymbol{c} = (f(x_1), \ldots, f(x_n)) \in \mathsf{RS}_k(\boldsymbol{x})$$
. Let $\boldsymbol{r} = \boldsymbol{c} + \boldsymbol{e}$ with $d_H(\boldsymbol{r}, \boldsymbol{c}) \leqslant t$.

- **r** is known;
- We aim at computing *c*.

Step 1 Compute the polynomial $P = P_0(X) + P_1(X)Y \in \mathbb{F}_q[X, Y]$ satisfying

(i) deg
$$P_0 < n - t$$
, deg $P_1 < n - k - t$
(ii) $\forall i \in \{1, ..., n\}, P(x_i, r_i) = 0.$

Decoding RS codes – Berlekamp Welch algorithm

Let
$$\boldsymbol{c} = (f(x_1), \ldots, f(x_n)) \in \mathsf{RS}_k(\boldsymbol{x})$$
. Let $\boldsymbol{r} = \boldsymbol{c} + \boldsymbol{e}$ with $d_H(\boldsymbol{r}, \boldsymbol{c}) \leqslant t$.

- **r** is known;
- We aim at computing *c*.

Step 1 Compute the polynomial $P = P_0(X) + P_1(X)Y \in \mathbb{F}_q[X, Y]$ satisfying (i) deg $P_0 < n - t$, deg $P_1 < n - k - t$ (ii) $\forall i \in \{1, \dots, n\}, P(x_i, r_i) = 0$. Step 2 If $t \leq \frac{n-k}{2}$, then $f = -\frac{P_0}{P_1}$

Decoding RS codes - Berlekamp Welch algorithm

Let
$$\boldsymbol{c} = (f(x_1), \ldots, f(x_n)) \in \mathsf{RS}_k(\boldsymbol{x})$$
. Let $\boldsymbol{r} = \boldsymbol{c} + \boldsymbol{e}$ with $d_H(\boldsymbol{r}, \boldsymbol{c}) \leqslant t$.

- **r** is known;
- We aim at computing *c*.

Step 1 Compute the polynomial $P = P_0(X) + P_1(X)Y \in \mathbb{F}_q[X, Y]$ satisfying (i) deg $P_0 < n - t$, deg $P_1 < n - k - t$ (ii) $\forall i \in \{1, \dots, n\}, P(x_i, r_i) = 0$. Step 2 If $t \leq \frac{n-k}{2}$, then $f = -\frac{P_0}{P_1}$

Proof.

P(X, f(X)) has degree < n - t and has $\ge n - t$ roots. Hence is zero.

LDPC codes

Low Density Parity Check codes. Informally they are codes which are the kernel of a "sparse" matrix.

Definition

A sequence $(\mathscr{C}_s)_{s\in\mathbb{N}}$ of codes whose length sequence $(n_s)_s$ tends to infinity is said to be LDPC (resp MDPC^a) is for any s, \mathscr{C}_s is the kernel of a matrix H_s whose row weight is in O(1) (resp $O(\sqrt{n_s})$).

^athe 'M' stands for *moderate*

Toy example. Consider the binary code defined as the kernel of:

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Consider a codeword *c*.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{c} = (1 \quad 0 \quad 1 \quad 1)$$

Consider a codeword \boldsymbol{c} ... with some errors.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Color the rows of H which have an odd number of 1 in common with y.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Easy instances

Decoding LDPC codes – the bit flipping algorithm

For each index, count the number of blue 1's in the corresponding column.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ (1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

Flip bits matching with the largest number of unsatisfied rows.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ (1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

Flip bits matching with the largest number of unsatisfied rows.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ (1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

Flip bits matching with the largest number of unsatisfied rows.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ (1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

Flip bits matching with the largest number of unsatisfied rows.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

Reset counters.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ (? & ? & ? & ? & ? & ? & ? & ? & ? \end{pmatrix}$$

An error remains.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ (? & ? & ? & ? & ? & ? & ? & ? & ? \end{pmatrix}$$

One more time!

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ (? & ? & ? & ? & ? & ? & ? & ? & ? \end{pmatrix}$$

Color unsatisfied rows in blue.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ (? & ? & ? & ? & ? & ? & ? & ? & ? \end{pmatrix}$$

Count number of blue ones per column.

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Flip bits...

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Flip bits...

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 & 1 & 0 & 0 \end{pmatrix}$$

We did it!!!

$$\boldsymbol{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{y} = (1 \quad 0 \quad 1 \quad 1)$$

Easy instances

LDPC/MDPC codes – How many errors?

- A random LDPC code (row weight w in O(1)) corrects $\Theta(n)$ errors w.h.p. For dim $C = \frac{n}{2}$, standard LDPC codes correct $\approx 0.10n$ errors (Shannon limit is $\approx 0.11n$).
- Almost any MDPC code (row weight $O(\sqrt{n})$) corrects **any** pattern of $\Omega\left(\frac{\sqrt{n}\log\log n}{\log n}\right)$ (Tillich, 2017).

3 Code based cryptography

- McEliece scheme
- Some examples and proposals

```
• Public key: (G,t);
// (The rows of G span some code C).
```

- Public key: (*G*, *t*);
 - // (The rows of ${\pmb G}$ span some code ${\mathscr C}$).
- Secret key: An efficient decoding algorithm ${\mathcal A}$ for ${\mathscr C}.$

- Public key: (*G*, *t*);
 - // (The rows of ${\pmb G}$ span some code ${\mathscr C}$).
- Secret key: An efficient decoding algorithm \mathcal{A} for \mathscr{C} .
- Encryption: Plaintext: $\boldsymbol{m} \in \mathbb{F}_q^k$.
 - *mG* ∈ *C*

- Public key: (*G*, *t*);
 - // (The rows of ${\pmb G}$ span some code ${\mathscr C}$).
- Secret key: An efficient decoding algorithm \mathcal{A} for \mathscr{C} .
- Encryption: Plaintext: $\boldsymbol{m} \in \mathbb{F}_q^k$.
 - *mG* ∈ *C*
 - $\boldsymbol{e} \in \mathbb{F}_q^n$ is a uniformly random word of weight t;

- Public key: (*G*, *t*);
 - // (The rows of ${\pmb G}$ span some code ${\mathscr C}$).
- Secret key: An efficient decoding algorithm \mathcal{A} for \mathscr{C} .
- Encryption: Plaintext: $\boldsymbol{m} \in \mathbb{F}_q^k$.
 - *mG* ∈ *C*
 - $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ is a uniformly random word of weight t;
 - Ciphertext:

$$\boldsymbol{c} \stackrel{\mathsf{def}}{=} \boldsymbol{m} \boldsymbol{G} + \boldsymbol{e}.$$

It is a public key encryption scheme based on the hardness of the bounded decoding problem.

- Public key: (*G*, *t*);
 - // (The rows of ${\pmb G}$ span some code ${\mathscr C}$).
- Secret key: An efficient decoding algorithm $\mathcal A$ for $\mathscr C$.
- Encryption: Plaintext: $\boldsymbol{m} \in \mathbb{F}_q^k$.
 - *mG* ∈ *C*
 - $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ is a uniformly random word of weight t;
 - Ciphertext:

$$\boldsymbol{c} \stackrel{\mathsf{def}}{=} \boldsymbol{m} \boldsymbol{G} + \boldsymbol{e}.$$

• Decryption: Apply A to recover m.

McEliece presented in the literature

- Secret key.
 - **G**, a structured $k \times n$ matrix whose rows span a code \mathscr{C} ;
 - *S* ∈ GL_k;
 - $\boldsymbol{P} \in \mathfrak{S}_n$.
- Public key. (*SGP*, *t*);
- Encryption $m \mapsto mSGP + e$ for a uniformly random e of weight t;
- Decryption
 - Right multiply by P^{-1} : $mSGP + e \mapsto mSG + eP^{-1}$;
 - decode to get *mS*;
 - right multiply it by S^{-1} to get m.

I prefer this presentation

It is a public key encryption scheme based on the hardness of the bounded decoding problem.

- Public key: (G, t);
 # (G is a generator matrix of some code C, i.e. its rows span C).
- Secret key: An efficient decoding algorithm A.
- Encryption: Plaintext: $\boldsymbol{m} \in \mathbb{F}_q^k$.
 - *mG* ∈ *C*
 - $\boldsymbol{e} \in \mathbb{F}_q^n$ is a uniformly random word of weight t;
 - Ciphertext:

$$m{c} \stackrel{\mathsf{def}}{=} m{m}m{G} + m{e}$$

• **Decryption:** Apply \mathcal{A} to recover \boldsymbol{m} .

McEliece scheme

Advantages and drawbacks

Avantages

- Fast encryption and decryption.
- Post quantum.

Advantages and drawbacks

Avantages

- Fast encryption and decryption.
- Post quantum.

Drawbacks

- Requires large key sizes : Historical proposal (1978) 32 kB key.
- But, impressive improvements in the last decades. •

McEliece scheme

NIST's call

	Signature	s	KEM/Encryption		Overall	
Lattice-based	CPVSTALS-DLITHI.M IPR FALCON MCRUIGN of FSLA	5	Compact LME Construct-MEE (SISTAL-A-MEE) SISTAL-A-MEE SISTAL-A-MEE SISTAL-A-MEE SISTAL-A-MEE LAMA LAMA LAMA LAMA LAMA LAMA LAMA L	21	26	
Code-based	rapigRM RuCoSS RenkSign	3	BR/E Clease: McElece OAGS BR/E Clease: McElece OAGS EAC Lacker LEDArk LEDArker LEDArker LEDArker LEDArker LeDArker Ourdbarrer McNie NTS-HEM Ourdbarrer Ourdbarrer McNie NGC-HEM EDArker EDARKER McNie NG-HEM EDARKER	17	20	
Multi-variate	DualModeMS GeMSS Gui HMQ-3 MQDSS LUOV Rainbow	7	OFFKM DME	2	9	
Hash-based	Gravity=SPHINCS Pionic SPHINCS+	3			3	
Others	Post-quentum RSA-Signature WeinutDSA	2	Guess Agein Mercenne-156839 Post-quantum RSA-Encryption Ramatake SIKE Three Bears	6	8	
Total		20		46	66	
withdrawn			+HK17 +RVB +SRTPI	3	3	

A. Couvreur

Code Based Crypto

Historical proposal with binary Goppa codes.

- Goppa codes are Alternant codes GRS_k(x, y) ∩ 𝔽ⁿ₂ with a particular relation between x and y;
- They permit to correct twice the number of errors that can correct other binary alternant codes.

Historical proposal with binary Goppa codes.

- Goppa codes are Alternant codes GRS_k(x, y) ∩ 𝔽ⁿ₂ with a particular relation between x and y;
- They permit to correct twice the number of errors that can correct other binary alternant codes.
- Specifications:
 - **Public key.** Some basis of $GRS_k(x, y) \cap \mathbb{F}_q^n$ and a number of errors t you can correct (namely $t = \frac{n-k}{2}$).
 - Secret key. The pair (x, y): it permits to construct $\text{GRS}_k(x, y)$ which is used for decoding.

Notation

By an $[n, k]_q$ code, we mean "a code of dimension k in $\mathbb{F}_q^{n"}$.

¹According to R. Canto Torres C Library CaWoF

Code Based Crypto

Notation

By an $[n, k]_q$ code, we mean "a code of dimension k in $\mathbb{F}_q^{n"}$.

- Historical proposal. McEliece 1978. A [1024, 524]₂ 50-correcting Goppa code.
 - Key size : 32,8 kB;
 - Security : 54 bits (in 1978, \approx 46 bits today¹).

¹According to R. Canto Torres C Library CaWoF

Notation

By an $[n, k]_q$ code, we mean "a code of dimension k in $\mathbb{F}_q^{n"}$.

- Historical proposal. McEliece 1978. A [1024, 524]₂ 50–correcting Goppa code.
 - Key size : 32,8 kB;
 - Security : 54 bits (in 1978, \approx 46 bits today¹).
- Bernstein, Lange, Peters 2008. A [2048, 1751]₂ 27–correcting Goppa code.
 - Key size : 65 kB;
 - Security : 80 bits (actually \approx 61 bits today¹).

¹According to R. Canto Torres C Library **CaWoF**

Notation

By an $[n, k]_q$ code, we mean "a code of dimension k in $\mathbb{F}_q^{n"}$.

- Historical proposal. McEliece 1978. A [1024, 524]₂ 50–correcting Goppa code.
 - Key size : 32,8 kB;
 - Security : 54 bits (in 1978, \approx 46 bits today¹).
- Bernstein, Lange, Peters 2008. A [2048, 1751]₂ 27–correcting Goppa code.
 - Key size : 65 kB;
 - Security : 80 bits (actually \approx 61 bits today¹).
- Classic McEliece (Bernstein et al. NIST proposal). A [6960, 5296]₂ 119–correcting Goppa code.
 - Key :1.1MB
 - $\bullet~$ Security > 256 bits.

¹According to R. Canto Torres C Library CaWoF

First suggested by Gaborit in 2005, the use codes with a non trivial group automorphism G permits to divide the key size by |G|.

• Faugère et. al. 2016, Barelli 2017. The security of the key of an alternant code with automorphism group G is not larger than that of the G-invariant subcode.

First suggested by Gaborit in 2005, the use codes with a non trivial group automorphism G permits to divide the key size by |G|.

- Faugère et. al. 2016, Barelli 2017. The security of the key of an alternant code with automorphism group G is not larger than that of the G-invariant subcode.
- Actually, for the currently known attacks, the security w.r.t key-recovery attacks is much larger than the security w.r.t message recovery attacks.

NIST proposals :

 DAGS (E. Persichetti et. al.) Group G = (Z/2Z)^s with s ∈ {4,5,6}. Based on Generalised Srivastava codes (particular alternant).

security	n	k	\mathbb{F}_q	G	key size (kBytes)
128	832	416	\mathbb{F}_{32}	$(\mathbb{Z}/2\mathbb{Z})^4$	6.8
192	1216	512	\mathbb{F}_{64}	$(\mathbb{Z}/2\mathbb{Z})^5$	8.5
256	2112	704	\mathbb{F}_{64}	$(\mathbb{Z}/2\mathbb{Z})^6$	11.6

NIST proposals :

 DAGS (E. Persichetti et. al.) Group G = (Z/2Z)^s with s ∈ {4,5,6}. Based on Generalised Srivastava codes (particular alternant).

security	n	k	\mathbb{F}_q	G	key size (kBytes)
128	832	416	\mathbb{F}_{32}	$(\mathbb{Z}/2\mathbb{Z})^4$	6.8
192	1216	512	\mathbb{F}_{64}	$(\mathbb{Z}/2\mathbb{Z})^5$	8.5
256	2112	704	\mathbb{F}_{64}	$(\mathbb{Z}/2\mathbb{Z})^6$	11.6

 BIG QUAKE (C- et. al.) Group Z/ℓZ with ℓ prime and primitive modulo 2. Based on Goppa codes.

security	n	k	\mathbb{F}_q	G	key size (kBytes)
128	3510	2418	\mathbb{F}_2	$\mathbb{Z}/13\mathbb{Z}$	25.4
192	7410	4674	\mathbb{F}_2	$\mathbb{Z}/19\mathbb{Z}$	84.1
256	10070	6650	\mathbb{F}_2	$\mathbb{Z}/19\mathbb{Z}$	149.6

LDPC/MDPC codes

History

- Monico, Rosenthal, Shokrollahi (2000). Suggest the use of LDPC codes for McEliece encryption.
- Baldi M., Bodrato M., Chiaraluce F. (2008).
 - use quasi-cyclic LDPC codes to get shorter keys.
 - "deforms" the LDPC structure to resist against a key-recovery attack by computing low weight codewords.
- Misoczki, Tillich, Sendrier, Baretto (2012). Use quasi-cyclic MDPC codes.

• The code is the row space of a **sparse** doubly circulant matrix:

$$\begin{pmatrix} f_0 & f_1 & \cdots & f_{n-1} & g_0 & g_1 & \cdots & g_{n-1} \\ f_0 & f_1 & \cdots & f_{n-2} & g_0 & g_1 & \cdots & g_{n-2} \\ & \ddots & \ddots & \vdots & & \ddots & \ddots & \vdots \\ & & \ddots & f_1 & & & \ddots & g_1 \\ f_1 & f_2 & \cdots & f_{n-1} & f_0 & g_1 & g_2 & \cdots & g_{n-1} & g_0 \end{pmatrix}$$

• The code is the row space of a **sparse** doubly circulant matrix:

$$\begin{pmatrix} f_0 & f_1 & \cdots & f_{n-1} & g_0 & g_1 & \cdots & g_{n-1} \\ f_0 & f_1 & \cdots & f_{n-2} & g_0 & g_1 & \cdots & g_{n-2} \\ & \ddots & \ddots & \vdots & & \ddots & \ddots & \vdots \\ & & \ddots & f_1 & & & \ddots & g_1 \\ f_1 & f_2 & \cdots & f_{n-1} & f_0 & g_1 & g_2 & \cdots & g_{n-1} & g_0 \end{pmatrix}$$

• It can be represented by two sparse (weight $O(\sqrt{n})$) polynomials in $\mathbb{F}_2[X]/(X^n-1)$

 $(f(X) \mid g(X))$

• It can represented by two sparse (weight $O(\sqrt{n})$) polynomials in $\mathbb{F}_2[X]/(X^n-1)$ ($f(X) \mid g(X)$)

- It can represented by two sparse (weight $O(\sqrt{n})$) polynomials in $\mathbb{F}_2[X]/(X^n-1)$ ($f(X) \mid g(X)$)
- The **public key** is the reduced row echelon form is of the form:

(1 | h(X))

where $h \equiv f^{-1}g \mod (X^n - 1)$.

- It can represented by two sparse (weight $O(\sqrt{n})$) polynomials in $\mathbb{F}_2[X]/(X^n-1)$ ($f(X) \mid g(X)$)
- The **public key** is the reduced row echelon form is of the form:

(1 | h(X))

where $h \equiv f^{-1}g \mod (X^n - 1)$.

• The secret key is the pair (f, g).

- It can represented by two sparse (weight $O(\sqrt{n})$) polynomials in $\mathbb{F}_2[X]/(X^n-1)$ ($f(X) \mid g(X)$)
- The **public key** is the reduced row echelon form is of the form:

where $h \equiv f^{-1}g \mod (X^n - 1)$.

- The secret key is the pair (f,g).
- **Comment.** *f* and *g* are sparse, *h* has no apparent structure. (same as NTRU or Mersenne).

Parameters.

Security	n	k	row weight	t	Key size (kB)
128	20326	10163	142	134	1.25
192	39706	19853	206	199	2.5
256	65498	32749	274	264	4.1

• GRScodes, (Niederreiter 1986).

• GRScodes, (Niederreiter 1986).

[Polynomial time attack: Sidelnikov Shestakov 1992]

 GRScodes, (Niederreiter 1986). [Polynomial time attack: Sidelnikov Shestakov 1992]
 Reed-Muller codes (Sidelinikov 1994)

 GRScodes, (Niederreiter 1986). [Polynomial time attack: Sidelnikov Shestakov 1992]
 Reed-Muller codes (Sidelinikov 1994) [Sub-exponential time attack: Minder, Shokrollahi 2007] [Polynomial time attack: Borodin, Chizhov, 2013]

• GRScodes, (Niederreiter 1986).

[Polynomial time attack: Sidelnikov Shestakov 1992]

• Reed-Muller codes (Sidelinikov 1994)

[Sub-exponential time attack: Minder, Shokrollahi 2007] [Polynomial time attack: Borodin, Chizhov, 2013]

• Algebraic Geometry codes, (Janwa, Moreno 1996):

GRScodes, (Niederreiter 1986).

 [Polynomial time attack: Sidelnikov Shestakov 1992]

 Reed-Muller codes (Sidelinikov 1994)

 [Sub-exponential time attack: Minder, Shokrollahi 2007]
 [Polynomial time attack: Borodin, Chizhov, 2013]

 Algebraic Geometry codes, (Janwa, Moreno 1996):

 [Curves of genus 1 and 2 : Faure, Minder 2009]
 [Any genus: C. Márguez–Corbella, Pellikaan 2014]

- GRScodes, (Niederreiter 1986).

 [Polynomial time attack: Sidelnikov Shestakov 1992]

 Reed-Muller codes (Sidelinikov 1994)

 [Sub-exponential time attack: Minder, Shokrollahi 2007] [Polynomial time attack: Borodin, Chizhov, 2013]

 Algebraic Geometry codes, (Janwa, Moreno 1996):

 [Curves of genus 1 and 2 : Faure, Minder 2009] [Any genus: C. Márquez–Corbella, Pellikaan 2014]
- *q*-ary Goppa codes (Bernstein, Lange, Peters, 2011).

 GRScodes, (Niederreiter 1986). [Polynomial time attack: Sidelnikov Shestakov 1992] Reed-Muller codes (Sidelinikov 1994) [Sub-exponential time attack: Minder, Shokrollahi 2007] [Polynomial time attack: Borodin, Chizhov, 2013] Algebraic Geometry codes, (Janwa, Moreno 1996): [Curves of genus 1 and 2 : Faure, Minder 2009] [Any genus: C. Márguez–Corbella, Pellikaan 2014] q-ary Goppa codes (Bernstein, Lange, Peters, 2011). [Extension degree 2 : C. Otmani, Tillich 2015] [Degree 2 and 3 over non prime fields : Faugère, Perret, de Portzamparc, 2015]

 GRScodes, (Niederreiter 1986). [Polynomial time attack: Sidelnikov Shestakov 1992] Reed-Muller codes (Sidelinikov 1994) [Sub-exponential time attack: Minder, Shokrollahi 2007] [Polynomial time attack: Borodin, Chizhov, 2013] Algebraic Geometry codes, (Janwa, Moreno 1996): [Curves of genus 1 and 2 : Faure, Minder 2009] [Any genus: C. Márguez–Corbella, Pellikaan 2014] q-ary Goppa codes (Bernstein, Lange, Peters, 2011). [Extension degree 2 : C. Otmani, Tillich 2015] [Degree 2 and 3 over non prime fields : Faugère, Perret, de Portzamparc, 2015]

etc...

4 Security analysis

- Message recovery attacks
- Key recovery attacks

Message Recovery attacks

The bounded decoding problem is hard. Decoding a random code is difficult, the best known generic algorithms have exponential complexity.

Let \mathscr{C} be an [n, k] code described as the row space of a matrix **G**. Suppose we received $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with \mathbf{e} of weight $\leq t$.

Take a k-tuple i₁,..., i_k of columns of G such that the corresponding k × k matrix is invertible and suppose that none of these positions have errors (e_{ij} = 0 for any j ∈ {1,...,k}).

Let \mathscr{C} be an [n, k] code described as the row space of a matrix G. Suppose we received y = c + e with e of weight $\leq t$.

- Take a k-tuple i₁,..., i_k of columns of G such that the corresponding k × k matrix is invertible and suppose that none of these positions have errors (e_{ij} = 0 for any j ∈ {1,...,k}).
- We supposed that y_{ij} = c_{ij} for any j ∈ {1,...,k}. Then, c can be reconstructed from these k digits (since the k × k submatrix of G is invertible).

- Take a k-tuple i₁,..., i_k of columns of G such that the corresponding k × k matrix is invertible and suppose that none of these positions have errors (e_{ij} = 0 for any j ∈ {1,...,k}).
- We supposed that y_{ij} = c_{ij} for any j ∈ {1,...,k}. Then, c can be reconstructed from these k digits (since the k × k submatrix of G is invertible).
- This provides a word c:

- Take a k-tuple i₁,..., i_k of columns of G such that the corresponding k × k matrix is invertible and suppose that none of these positions have errors (e_{ij} = 0 for any j ∈ {1,...,k}).
- We supposed that y_{ij} = c_{ij} for any j ∈ {1,...,k}. Then, c can be reconstructed from these k digits (since the k × k submatrix of G is invertible).
- 3 This provides a word \tilde{c} :
 - if $d(\tilde{\boldsymbol{c}}, \boldsymbol{y}) \leqslant t$, then return $\tilde{\boldsymbol{c}}$;

- Take a k-tuple i₁,..., i_k of columns of G such that the corresponding k × k matrix is invertible and suppose that none of these positions have errors (e_{ij} = 0 for any j ∈ {1,...,k}).
- We supposed that y_{ij} = c_{ij} for any j ∈ {1,...,k}. Then, c can be reconstructed from these k digits (since the k × k submatrix of G is invertible).
- This provides a word c:
 - if $d(\tilde{\boldsymbol{c}}, \boldsymbol{y}) \leqslant t$, then return $\tilde{\boldsymbol{c}}$;
 - else, go to (1).

Complexity

Depends on the probability of finding k positions avoiding the error positions.

$$\mathbb{P} = \frac{\binom{n-t}{k}}{\binom{n}{k}} \cdot$$

Complexity

Depends on the probability of finding k positions avoiding the error positions.

$$\mathbb{P} = \frac{\binom{n-t}{k}}{\binom{n}{k}} \cdot$$

This leads to an average complexity

$$O\left(\frac{\binom{n}{k}}{\binom{n-t}{k}}n^{\omega}\right).$$

Complexity

Depends on the probability of finding k positions avoiding the error positions.

$$\mathbb{P} = \frac{\binom{n-t}{k}}{\binom{n}{k}} \cdot$$

This leads to an average complexity

$$O\left(\frac{\binom{n}{k}}{\binom{n-t}{k}}n^{\omega}\right)$$

Remark

- If $t = \alpha n$ for some $\alpha > 0$ and k = Rn for some R > 0, then the average complexity is in $2^{\Omega(n)}$.
- If t = O(1), the the average complexity is polynomial: in $O(n^{t+\omega})$.

Improvements

- Lee Brickel 1988;
- Stern 1989 & Dumer 1991;
- Canteaut Chabaud 1998;
- May, Meurer, Thomae 2011;
- Becker, Joux, May, Meurer, 2012;
- May, Ozerov, 2015.

Improvements

- Lee Brickel 1988;
- Stern 1989 & Dumer 1991;
- Canteaut Chabaud 1998;
- May, Meurer, Thomae 2011;
- Becker, Joux, May, Meurer, 2012;
- May, Ozerov, 2015.

Example

For a binary code of length 0.5*n*, correcting an amount of 10% of errors costs $O(2^{0.09n})$ using BJMM.

Improvements

- Lee Brickel 1988;
- Stern 1989 & Dumer 1991;
- Canteaut Chabaud 1998;
- May, Meurer, Thomae 2011;
- Becker, Joux, May, Meurer, 2012;
- May, Ozerov, 2015.

Example

For a binary code of length 0.5*n*, correcting an amount of 10% of errors costs $O(2^{0.09n})$ using BJMM.

Remark

Most of the improvements concern binary codes.

Key recovery attacks : How to propose a family of codes?

The family should

- contain "large" enough codes to resist to message recovery attacks;
- be large enough (to avoid brute force search);
- The structure of the code should be easily hidden (which is the hardest task).

LDPC codes

Problem.

- Given a code \mathscr{C} described as the row space of a matrix \boldsymbol{G} , find a sparse matrix \boldsymbol{H} such that $\boldsymbol{G}\boldsymbol{H}^T = 0$.
- Equivalently, find a collection of low weight words (\boldsymbol{h}_i) such that $\boldsymbol{G}\boldsymbol{h}_i^T = 0.$

LDPC codes

Problem.

- Given a code \mathscr{C} described as the row space of a matrix \boldsymbol{G} , find a sparse matrix \boldsymbol{H} such that $\boldsymbol{G}\boldsymbol{H}^{T} = 0$.
- Equivalently, find a collection of low weight words (\boldsymbol{h}_i) such that $\boldsymbol{G}\boldsymbol{h}_i^T = 0.$
- This can be done by generic decoding : finding a low weight codeword is nothing but decoding the zero codeword.

LDPC codes

Problem.

- Given a code \mathscr{C} described as the row space of a matrix \boldsymbol{G} , find a sparse matrix \boldsymbol{H} such that $\boldsymbol{G}\boldsymbol{H}^{T} = 0$.
- Equivalently, find a collection of low weight words (\boldsymbol{h}_i) such that $\boldsymbol{G}\boldsymbol{h}_i^T = 0.$
- This can be done by generic decoding : finding a low weight codeword is nothing but decoding the zero codeword.
- For LDPC codes, we know that *H* has row weight bounded by *t*, hence these row vectors can be recovered in polynomial time O(n^{t+ω}).

LDPC/MDPC codes

Summary. Using generic decoding, the secret key can be recovered

- in polynomial time for LDPC codes;
- in $O(2^{\sqrt{n}})$ for MDPC codes.

LDPC/MDPC codes

Summary. Using generic decoding, the secret key can be recovered

- in polynomial time for LDPC codes;
- in $O(2^{\sqrt{n}})$ for MDPC codes.

Remark

For MDPC codes the rows of **H** such as the errors have weight $O(\sqrt{n})$. Therefore, both key recovery and message recovery attacks have complexity $O(2^{\sqrt{n}})$.

Definition

Let $\mathscr{C}, \mathscr{D} \subseteq \mathbb{F}_q^n$ be two codes.

$$\mathscr{C} \star \mathscr{D} \stackrel{\mathsf{def}}{=} \operatorname{Span}\{(c_1 d_1, \ldots, c_n d_n) \mid \boldsymbol{c} \in \mathscr{C}, \ \boldsymbol{d} \in \mathscr{D}\}$$

Theorem (Cascudo, Cramer, Mirandola, Zémor. 2014)

Let $\mathscr{A} \subseteq \mathbb{F}_q^n$ be an [n, k] random code with $n > \binom{k+1}{2}$. Then, for any $0 < \ell < \binom{k+1}{2}$,

$$\mathbb{P}\left(\dim(\mathscr{A}\star\mathscr{A})\leqslant\binom{k+1}{2}-\ell\right)=O(q^{-\ell}\cdot q^{-n-\binom{k+1}{2}})$$

Informally, dim $\mathscr{A} \star \mathscr{A} = \binom{k+1}{2} w.h.p.$

Proposition

Let \mathscr{C} be an [n, k] GRS code with k < n/2, then

$$\dim \mathscr{C} \star \mathscr{C} = 2 \dim \mathscr{C} + 1.$$

Proposition

Let \mathscr{C} be an [n, k] GRS code with k < n/2, then

 $\dim \mathscr{C} \star \mathscr{C} = 2 \dim \mathscr{C} + 1.$

Consequences. Attacks on schemes based on variants of GRS codes which resisted to a previous attack (that of Sidelnikov Shestakov 1992).

Proposition

Let \mathscr{C} be an [n, k] GRS code with k < n/2, then

 $\dim \mathscr{C} \star \mathscr{C} = 2 \dim \mathscr{C} + 1.$

Consequences. Attacks on schemes based on variants of GRS codes which resisted to a previous attack (that of Sidelnikov Shestakov 1992).

- Wieschebrink 2006 (Broke Berger Loidreau proposal).
- C., Gaborit, Gauthier–Umaña, Otmani, Tillich 2013. (Variants of Wieschebrink and Baldi et al.).
- C., Otmani, Tillich 2014. Goppa codes with extension degree 2.

Alternant codes – brute force attacks

An alternant code is a $\operatorname{GRS}_k(x, y) \cap \mathbb{F}_q^n$ where the GRS code is defined over some extension \mathbb{F}_{q^m} . The secret key is the pair (x, y) (its knowledge permits to correct errors).

- Brute force attack is in $O(q^{2nm})$.
- Actually, Sendrier's Support Splitting algorithm permits to determine the permutation relating two codes if exists. Hence it is sufficient to find the pair (x, y) up to permutation : which divides the cost by n!
- This leads to a cost

$$O(\frac{q^{2nm}}{n!})$$

Actually $n \leqslant q^m$ and hence $\frac{q^{2nm}}{n!} > \frac{n^{2n}}{n!} \gg n^n \cdot$

An alternant code can be defined as the kernel (whose entries are in some subfield) of a matrix of the form

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ x_1y_1 & x_2y_2 & \cdots & x_ny_n \\ \vdots & \vdots & & \vdots \\ x_1^ry_1 & x_2^ry_2 & \cdots & x_n^ry_n \end{pmatrix}$$

The secret key is the pair of vectors (x, y) and the public key a basis of this kernel.

Consequence. The x_i 's and the y_i 's are solutions of a polynomial system.

- Attacks on Goppa/alternant codes with a non trivial permutation group.
 - Faugère, Otmani, Perret, Tillich 2010.
 - Faugère, Otmani, Perret, de Portzamparc, Tillich 2016
- Attack on Goppa codes over non prime fields (with small degree)
 - Faugère, Perret, de Portzamparc, 2016.

Open questions :

- How to evaluate the complexity of this polynomial system resolution?
- How to get lower bounds for the complexity?

Open questions :

- How to evaluate the complexity of this polynomial system resolution?
- How to get lower bounds for the complexity?

Remark

Note that the polynomial system is overdetermined in general. Some relevant selection of a subset of equation may improve significantly the speed up of resolution! (See Faugère, Perret, de Portzamparc 2016)

Conclusion

• Code-based crypto is 40 years old.

Conclusion

- Code-based crypto is 40 years old.
- After being considered as unusable, it is coming back because of
 - a need of post quantum alternatives to number theoretic based primitives;
 - impressive improvements on the key sizes

Conclusion

- Code-based crypto is 40 years old.
- After being considered as unusable, it is coming back because of
 - a need of post quantum alternatives to number theoretic based primitives;
 - impressive improvements on the key sizes
- Promizing primitives
 - MDPC codes;
 - Binary Goppa/Alternant codes : 40 years and no polynomial time key recovery attack.

Merci!