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Introduction

There is frequently a confusion between:

Coding theory : resisting to noise;
Cryptography : resisting to bad persons.
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Introduction

Why is it so confusing?

French language is misleading:

“message codé”,

we should say
message chiffré;

“code secret”,

we should say
mot de passe;

“décoder un message”,

we should
say déchiffrer if you are the
owner of the key and décrypter
if you’re an eavesdropper.
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A bit coding theory

2 A bit coding theory
First definitions
A difficult problem
Easy instances
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A bit coding theory First definitions

Encoders, error correcting codes

Fundamental idea: add redundancy to information.

Noise

Encoder Decoder

message c

ReceiverSender

Message m Encoded c⊕ e Decoded
message m′

Definition
An encoder is a linear injective map: Fqk ↪→ Fqn .
An error correcting code, or code is the image of such a map, i.e. a
subspace of dimension k of Fn

q.
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A bit coding theory First definitions

Hamming metric

Definition
The Hamming weight of x ∈ Fn

q is defined as

wH(x)
def
= |{i ∈ {1, . . . , n} | xi 6= 0}|

The Hamming distance on Fn
q is defined by

dH(x , y)
def
= |{i | xi 6= yi}| = wH(x − y).

For instance, dH((0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 0)) = 2.
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A bit coding theory First definitions

Decoders

Definition
Let C ⊆ Fn

q and t 6 n. A (deterministic) t–decoder is a map
D : Fn

q −→ C ∪ {?} such that ∀c ∈ C and all e ∈ Fn
q with wH(e) 6 t, we

have
D(c + e) = c .

Definition
Let C ⊆ Fn

q, t 6 n and 0 < ε < 1. A probabilistic t–decoder of failure
probability ε is a map D : Fn

q −→ C ∪ {?} such that for a uniformly
random c ∈ C and a uniformly random e ∈ Fn

q of weight t, we have

P(D(c + e) = c) > 1− ε.
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A bit coding theory A difficult problem

Almost every code is good but...

Shannon Theorem (very informally) asserts that for almost any code C of
dimension k = Rn for some R > 0, there is a probabilistic t–decoder with
t = τn for some τ > 0 (τ depends on R) with failure probability 2−O(n).

But the theorem does not assert the existence of a polynomial time
decoder.

Moreover, we have:

Theorem (Berlekamp, McEliece, Van Tilbørg, 1978)

The following problem is NP–complete.

Problem. (Bounded decoding Problem) Let C ⊆ Fn
q, y ∈ Fn

q and
t ∈ {0, . . . , n}. Decide whether there exists c ∈ C such that dH(c , y) 6 t.
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A bit coding theory Easy instances

Easy instances

Algebraic coding (with deterministic decoders)
Reed–Muller Codes;
Reed–Solomon and alternant codes;
Algebraic geometry codes;
etc...

Probabilistic coding (with probabilistic decoders)
LDPC codes (Gallager codes);
Turbo-codes.
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A bit coding theory Easy instances

Reed–Solomon Codes

Definition
Let x1, . . . , xn be distinct elements of Fq. The Reed Solomon code of
dimension k and support x is:

RSk(x)
def
= {(f (x1), . . . , f (xn)) | f ∈ Fq[X ]<k} .
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A bit coding theory Easy instances

Generalised Reed–Solomon Codes and Altenant codes

Definition
Let x1, . . . , xn be distinct elements of Fq and y1, . . . , yn be nonzero
elements of Fq. The generalised Reed Solomon code of dimension k ,
support x and multiplier y is:

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | f ∈ Fq[X ]<k} .

Definition
An Alternant code is a code over Fq of the form

GRSk(x , y) ∩ Fn
q

for some GRS code over Fqm .

Most of the families of algebraic codes are alternant codes : Goppa
codes, Srivastava codes, BCH codes, etc...
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A bit coding theory Easy instances

Decoding RS codes – Berlekamp Welch algorithm

Let c = (f (x1), . . . , f (xn)) ∈ RSk(x). Let r = c + e with dH(r , c) 6 t.
r is known;
We aim at computing c .

Step 1 Compute the polynomial P = P0(X ) + P1(X )Y ∈ Fq[X ,Y ]
satisfying
(i) degP0 < n − t, degP1 < n − k − t
(ii) ∀i ∈ {1, . . . , n},P(xi , ri ) = 0.

Step 2 If t 6 n−k
2 , then f = −P0

P1

Proof.
P(X , f (X )) has degree < n − t and has > n − t roots. Hence is zero.
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A bit coding theory Easy instances

LDPC codes

Low Density Parity Check codes. Informally they are codes which are the
kernel of a “sparse” matrix.

Definition
A sequence (Cs)s∈N of codes whose length sequence (ns)s tends to infinity
is said to be LDPC (resp MDPCa) is for any s, Cs is the kernel of a matrix
Hs whose row weight is in O(1) (resp O(

√
ns)).

athe ’M’ stands for moderate
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Toy example. Consider the binary code defined as the kernel of:

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Consider a codeword c .

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


c =

(
1 0 0 0 0 0 0 1 1

)

A. Couvreur Code Based Crypto Post scryptum 2018 17 / 66



A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Consider a codeword c ... with some errors.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 0

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Color the rows of H which have an odd number of 1 in common with y .

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 0

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

For each index, count the number of blue 1’s in the corresponding column.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 0

)(
1 1 1 1 2 2 1 1 2

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Flip bits matching with the largest number of unsatisfied rows.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 0

)(
1 1 1 1 2 2 1 1 2

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Flip bits matching with the largest number of unsatisfied rows.
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A bit coding theory Easy instances
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Reset counters.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
? ? ? ? ? ? ? ? ?

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

An error remains.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
? ? ? ? ? ? ? ? ?

)

A. Couvreur Code Based Crypto Post scryptum 2018 26 / 66



A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

One more time!

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
? ? ? ? ? ? ? ? ?

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Color unsatisfied rows in blue.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
? ? ? ? ? ? ? ? ?

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Count number of blue ones per column.

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
0 0 1 1 2 1 1 0 0

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

Flip bits...

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 1 0 0 1 1

)(
0 0 1 1 2 1 1 0 0

)
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm
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A bit coding theory Easy instances

Decoding LDPC codes – the bit flipping algorithm

We did it!!!

H =


1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1


y =

(
1 0 0 0 0 0 0 1 1

)
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A bit coding theory Easy instances

LDPC/MDPC codes – How many errors?

A random LDPC code (row weight w in O(1)) corrects Θ(n) errors
w.h.p. For dimC = n

2 , standard LDPC codes correct ≈ 0.10n errors
(Shannon limit is ≈ 0.11n).
Almost any MDPC code (row weight O(

√
n)) corrects any pattern of

Ω
(√

n log log n
log n

)
(Tillich, 2017).
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Code based cryptography

3 Code based cryptography
McEliece scheme
Some examples and proposals
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Code based cryptography McEliece scheme

McEliece Scheme (1978)

It is a public key encryption scheme based on the hardness of the bounded
decoding problem.

Public key: (G , t);
// (The rows of G span some code C ).

Secret key: An efficient decoding algorithm A for C .
Encryption: Plaintext: m ∈ Fk

q .
mG ∈ C

e ∈ Fn
q is a uniformly random word of weight t;

Ciphertext:
c def

= mG + e.

Decryption: Apply A to recover m.
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Encryption: Plaintext: m ∈ Fk

q .
mG ∈ C
e ∈ Fn

q is a uniformly random word of weight t;
Ciphertext:

c def
= mG + e.

Decryption: Apply A to recover m.
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Code based cryptography McEliece scheme

McEliece presented in the literature

Secret key.
G , a structured k × n matrix whose rows span a code C ;
S ∈ GLk ;
P ∈ Sn.

Public key. (SGP, t);
Encryption m 7→ mSGP + e for a uniformly random e of weight t;
Decryption

Right multiply by P−1 : mSGP + e 7−→ mSG + eP−1;
decode to get mS ;
right multiply it by S−1 to get m.
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Code based cryptography McEliece scheme

I prefer this presentation

It is a public key encryption scheme based on the hardness of the bounded
decoding problem.

Public key: (G , t);
# (G is a generator matrix of some code C , i.e. its
rows span C ).

Secret key: An efficient decoding algorithm A.
Encryption: Plaintext: m ∈ Fk

q .
mG ∈ C
e ∈ Fn

q is a uniformly random word of weight t;
Ciphertext:

c def
= mG + e

Decryption: Apply A to recover m.
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Code based cryptography McEliece scheme

Advantages and drawbacks

Avantages
Fast encryption and decryption.
Post quantum.

Drawbacks
Requires large key sizes : Historical proposal (1978) 32 kB key.
But, impressive improvements in the last decades.
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Code based cryptography McEliece scheme

NIST’s call

A. Couvreur Code Based Crypto Post scryptum 2018 39 / 66



Code based cryptography Some examples and proposals

Classic McEliece

Historical proposal with binary Goppa codes.
Goppa codes are Alternant codes GRSk(x , y) ∩ Fn

2 with a particular
relation between x and y ;
They permit to correct twice the number of errors that can correct
other binary alternant codes.

Specifications:
Public key. Some basis of GRSk(x , y) ∩ Fn

q and a number of errors t
you can correct (namely t = n−k

2 ).
Secret key. The pair (x , y) : it permits to construct GRSk(x , y)
which is used for decoding.
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Code based cryptography Some examples and proposals

Classic McEliece

Notation
By an [n, k]q code, we mean “a code of dimension k in Fn

q”.

Historical proposal. McEliece 1978. A [1024, 524]2 50–correcting
Goppa code.

Key size : 32,8 kB;
Security : 54 bits (in 1978, ≈ 46 bits today1).

Bernstein, Lange, Peters 2008. A [2048, 1751]2 27–correcting Goppa
code.

Key size : 65 kB;
Security : 80 bits (actually ≈ 61 bits today1).

Classic McEliece (Bernstein et al. NIST proposal). A [6960, 5296]2
119–correcting Goppa code.

Key :1.1MB
Security > 256 bits.

1According to R. Canto Torres C Library CaWoF
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Code based cryptography Some examples and proposals

McEliece with compact keys

First suggested by Gaborit in 2005, the use codes with a non trivial group
automorphism G permits to divide the key size by |G |.

Faugère et. al. 2016, Barelli 2017. The security of the key of an
alternant code with automorphism group G is not larger than that of
the G–invariant subcode.

Actually, for the currently known attacks, the security w.r.t
key-recovery attacks is much larger than the security w.r.t message
recovery attacks.

A. Couvreur Code Based Crypto Post scryptum 2018 42 / 66



Code based cryptography Some examples and proposals

McEliece with compact keys

First suggested by Gaborit in 2005, the use codes with a non trivial group
automorphism G permits to divide the key size by |G |.

Faugère et. al. 2016, Barelli 2017. The security of the key of an
alternant code with automorphism group G is not larger than that of
the G–invariant subcode.
Actually, for the currently known attacks, the security w.r.t
key-recovery attacks is much larger than the security w.r.t message
recovery attacks.

A. Couvreur Code Based Crypto Post scryptum 2018 42 / 66



Code based cryptography Some examples and proposals

McEliece with compact keys

NIST proposals :
DAGS (E. Persichetti et. al.) Group G = (Z/2Z)s with s ∈ {4, 5, 6}.
Based on Generalised Srivastava codes (particular alternant).

security n k Fq G key size (kBytes)
128 832 416 F32 (Z/2Z)4 6.8
192 1216 512 F64 (Z/2Z)5 8.5
256 2112 704 F64 (Z/2Z)6 11.6

BIG QUAKE (C- et. al.) Group Z/`Z with ` prime and primitive
modulo 2. Based on Goppa codes.

security n k Fq G key size (kBytes)
128 3510 2418 F2 Z/13Z 25.4
192 7410 4674 F2 Z/19Z 84.1
256 10070 6650 F2 Z/19Z 149.6
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Code based cryptography Some examples and proposals

LDPC/MDPC codes

History
Monico, Rosenthal, Shokrollahi (2000). Suggest the use of LDPC
codes for McEliece encryption.
Baldi M., Bodrato M., Chiaraluce F. (2008).

use quasi-cyclic LDPC codes to get shorter keys.
“deforms” the LDPC structure to resist against a key-recovery attack
by computing low weight codewords.

Misoczki, Tillich, Sendrier, Baretto (2012). Use quasi–cyclic MDPC
codes.
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Code based cryptography Some examples and proposals

MDPC codes – BIKE (BIt flipping Key Encapsulation)

The code is the row space of a sparse doubly circulant matrix:
f0 f1 · · · · · · fn−1 g0 g1 · · · · · · gn−1

f0 f1 · · · fn−2 g0 g1 · · · gn−2
. . . . . .

...
. . . . . .

...
. . . f1

. . . g1
f1 f2 · · · fn−1 f0 g1 g2 · · · gn−1 g0



It can be represented by two sparse (weight O(
√
n)) polynomials in

F2[X ]/(X n − 1)
( f (X ) | g(X ) )
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Code based cryptography Some examples and proposals

MDPC codes – BIKE (BIt flipping Key Encapsulation)

It can represented by two sparse (weight O(
√
n)) polynomials in

F2[X ]/(X n − 1)
( f (X ) | g(X ) )

The public key is the reduced row echelon form is of the form:

( 1 | h(X ) )

where h ≡ f −1g mod (X n − 1).
The secret key is the pair (f , g).
Comment. f and g are sparse, h has no apparent structure. (same as
NTRU or Mersenne).
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Code based cryptography Some examples and proposals

MDPC codes – BIKE (BIt flipping Key Encapsulation)

Parameters.

Security n k row weight t Key size (kB)
128 20326 10163 142 134 1.25
192 39706 19853 206 199 2.5
256 65498 32749 274 264 4.1
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Code based cryptography Some examples and proposals

Broken schemes

A. Couvreur Code Based Crypto Post scryptum 2018 48 / 66



Code based cryptography Some examples and proposals

Broken schemes

GRScodes, (Niederreiter 1986).

[Polynomial time attack: Sidelnikov Shestakov 1992]
Reed-Muller codes (Sidelinikov 1994)

[Sub-exponential time attack: Minder, Shokrollahi 2007]
[Polynomial time attack: Borodin, Chizhov, 2013]

Algebraic Geometry codes, (Janwa, Moreno 1996):

[Curves of genus 1 and 2 : Faure, Minder 2009]
[Any genus: C. Márquez–Corbella, Pellikaan 2014]

q–ary Goppa codes (Bernstein, Lange, Peters, 2011).

[Extension degree 2 : C. Otmani, Tillich 2015]
[Degree 2 and 3 over non prime fields : Faugère, Perret,

de Portzamparc, 2015]

etc...
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Security analysis

4 Security analysis
Message recovery attacks
Key recovery attacks
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Security analysis Message recovery attacks

Message Recovery attacks

The bounded decoding problem is hard. Decoding a random code is
difficult, the best known generic algorithms have exponential complexity.
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Security analysis Message recovery attacks

Prange Algorithm (Information Set Decoding) 1962

Let C be an [n, k] code described as the row space of a matrix G . Suppose
we received y = c + e with e of weight 6 t.

1 Take a k–tuple i1, . . . , ik of columns of G such that the corresponding
k × k matrix is invertible and suppose that none of these positions
have errors (eij = 0 for any j ∈ {1, . . . , k}).

2 We supposed that yij = cij for any j ∈ {1, . . . , k}. Then, c can be
reconstructed from these k digits (since the k × k submatrix of G is
invertible).

3 This provides a word c̃ :

if d(c̃ , y) 6 t, then return c̃ ;
else, go to (1).
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Security analysis Message recovery attacks

Complexity

Depends on the probability of finding k positions avoiding the error
positions.

P =

(n−t
k

)(n
k

) ·

This leads to an average complexity

O

( (n
k

)(n−t
k

)nω) .
Remark

If t = αn for some α > 0 and k = Rn for some R > 0, then the
average complexity is in 2Ω(n).
If t = O(1), the the average complexity is polynomial: in O(nt+ω).
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Security analysis Message recovery attacks

Improvements

Lee Brickel 1988;
Stern 1989 & Dumer 1991;
Canteaut Chabaud 1998;
May, Meurer, Thomae 2011;
Becker, Joux, May, Meurer, 2012;
May, Ozerov, 2015.

Example

For a binary code of length 0.5n, correcting an amount of 10% of errors
costs O(20.09n) using BJMM.

Remark
Most of the improvements concern binary codes.
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Security analysis Key recovery attacks

Key recovery attacks : How to propose a family of codes?

The family should
contain “large” enough codes to resist to message recovery attacks;
be large enough (to avoid brute force search);
The structure of the code should be easily hidden (which is the
hardest task).
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LDPC codes

Problem.
Given a code C described as the row space of a matrix G , find a
sparse matrix H such that GHT = 0.
Equivalently, find a collection of low weight words (hi ) such that
GhT

i = 0.

This can be done by generic decoding : finding a low weight codeword
is nothing but decoding the zero codeword.
For LDPC codes, we know that H has row weight bounded by t,
hence these row vectors can be recovered in polynomial time O(nt+ω).
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Security analysis Key recovery attacks

LDPC/MDPC codes

Summary. Using generic decoding, the secret key can be recovered
in polynomial time for LDPC codes;
in O(2

√
n) for MDPC codes.

Remark

For MDPC codes the rows of H such as the errors have weight O(
√
n).

Therefore, both key recovery and message recovery attacks have
complexity O(2

√
n).
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GRS codes – A distinguisher

Definition
Let C ,D ⊆ Fn

q be two codes.

C ?D
def
= Span{(c1d1, . . . , cndn) | c ∈ C , d ∈ D}
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GRS codes – A distinguisher

Theorem (Cascudo, Cramer, Mirandola, Zémor. 2014)

Let A ⊆ Fn
q be an [n, k] random code with n >

(k+1
2

)
. Then, for any

0 < ` <
(k+1

2

)
,

P
(
dim(A ?A ) 6

(
k + 1
2

)
− `
)

= O(q−` · q−n−(k+1
2 ))

Informally, dimA ?A =
(k+1

2

)
w.h.p.

Proposition

Let C be an [n, k] GRS code with k < n/2, then

dimC ? C = 2 dimC + 1.
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GRS codes – A distinguisher

Proposition

Let C be an [n, k] GRS code with k < n/2, then

dimC ? C = 2 dimC + 1.

Consequences. Attacks on schemes based on variants of GRS codes
which resisted to a previous attack (that of Sidelnikov Shestakov 1992).

Wieschebrink 2006 (Broke Berger Loidreau proposal).
C., Gaborit, Gauthier–Umaña, Otmani, Tillich 2013. (Variants of
Wieschebrink and Baldi et al.).
C., Otmani, Tillich 2014. Goppa codes with extension degree 2.
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Alternant codes – brute force attacks

An alternant code is a GRSk(x , y) ∩ Fn
q where the GRS code is defined

over some extension Fqm . The secret key is the pair (x , y) (its knowledge
permits to correct errors).

Brute force attack is in O(q2nm).
Actually, Sendrier’s Support Splitting algorithm permits to determine
the permutation relating two codes if exists. Hence it is sufficient to
find the pair (x , y) up to permutation : which divides the cost by n!

This leads to a cost

O(
q2nm

n!
)

Actually n 6 qm and hence q2nm

n! > n2n

n! � nn·
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Alternant codes – Algebraic attacks

An alternant code can be defined as the kernel (whose entries are in some
subfield) of a matrix of the form

y1 y2 · · · yn
x1y1 x2y2 · · · xnyn
...

...
...

x r1y1 x r2y2 · · · x rnyn

 .

The secret key is the pair of vectors (x , y) and the public key a basis of
this kernel.

Consequence. The xi ’s and the yi ’s are solutions of a polynomial system.
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Alternant codes – Algebraic attacks

Attacks on Goppa/alternant codes with a non trivial permutation
group.

Faugère, Otmani, Perret, Tillich 2010.
Faugère, Otmani, Perret, de Portzamparc, Tillich 2016

Attack on Goppa codes over non prime fields (with small degree)
Faugère, Perret, de Portzamparc, 2016.
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Alternant codes – Algebraic attacks

Open questions :
How to evaluate the complexity of this polynomial system resolution?
How to get lower bounds for the complexity?

Remark
Note that the polynomial system is overdetermined in general. Some
relevant selection of a subset of equation may improve significantly the
speed up of resolution! (See Faugère, Perret, de Portzamparc 2016)
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Conclusion

Code–based crypto is 40 years old.

After being considered as unusable, it is coming back because of
a need of post quantum alternatives to number theoretic based
primitives;
impressive improvements on the key sizes

Promizing primitives
MDPC codes;
Binary Goppa/Alternant codes : 40 years and no polynomial time key
recovery attack.
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Merci!
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