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+ Secure communication

+ Clock synchronisation

- Combining distant telescopes

- Communication Complexity Advantage

- Secure access to Quantum Cloud

- Bootstrapping small Quantum Computer

i Application

BREC"A =
<UBEN = 20

: JAND & AR
> [Joog w @ ¢ [}
NO: & MK

* Quantum Network Modules

 Network simulation and benchmarking

- Control Stack

- HAL Operating System

- Code optimization and compiling

- Bootstrapping small Quantum Computer

Interface

- Server and Client Nodes

- Hybrid Architecture

- Quantum Memory and Repeater

- Integration to long distance network
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Quantum Computing

Machine Learning
- Optimisation
 Quantum Chemistry

Programming Language
- Verification
- HAL Operating System
- Code optimization and compiling
- Architecture Design

- Server and Client Nodes

- Hybrid Architecture
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Post-Quantum

classical security against adversaries that exploit quantum effects

Quantum algorithms breaking computational assumptions
Factoring and Discrete Logarithm [Shor 94] Principal ideal problem [Hallgren 02]

Quantum effects breaking Information-theoretical assumptions
commitment scheme becomes non-binding [Crepeau,Salvail,Simard, Tapp 06]

Classical proof techniques no longer apply
rewinding



Post-Quantum



Post-Quantum

Learning with Error (LWE)

as hard as worst-case lattice problems, believed to be exponentially hard against QC



Post-Quantum

Learning with Error (LWE)

as hard as worst-case lattice problems, believed to be exponentially hard against QC

\

LWE-based Crypto Systems (FHE and etc)



Post-Quantum

Learning with Error (LWE)

as hard as worst-case lattice problems, believed to be exponentially hard against QC

\

LWE-based Crypto Systems (FHE and etc)

v

(classical) mixed commitment schemes (secure against quantum)
lifting classical security proof to the quantum setting, coin flipping protocols



Post-Quantum

Learning with Error (LWE)

as hard as worst-case lattice problems, believed to be exponentially hard against QC

\

LWE-based Crypto Systems (FHE and etc)

v

(classical) mixed commitment schemes (secure against quantum)
lifting classical security proof to the quantum setting, coin flipping protocols

(classical) Zero-Knowledge Proof-of-Knowledge (secure against quantum)
lifting classical security proof to the quantum setting, secure function evaluation



Algebraic Problems
Andrew M. Childs and Wim van Dam, 2008

The hidden subgroup problem

Let G be a finite Abelian group with group operations written additively

consider a function f: G — §, where § 1s some finite set. We say that f hides the subgroup H

f(x)=f(y)ifandonlyifx—ye H

find a generating set for H given the ability to query the function f
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Problem

Factorisation

Discrete log

Elliptic curve discrete log
Principal ideal

Shortest lattice vector
Graph isomorphism

Complexity
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11
92
93

Polynomia
Polynomia
Polynomia
Polynomia
Subexponentia
Exponential

|94,95

Cryptosystem

RSA
Diffie-Hellman, DSA, ..
ECDH, ECDSA, ...

Buchmann-Williams
NTRU, Ajtai-Dwork, ...



The hidden subgroup problem

Problem Complexity Cryptosystem
Factorisation Polynomial'’ RSA

Discrete log Polynomial '’ Diffie-Hellman, DSA, ..
Elliptic curve discrete log Polynomial® ECDH, ECDSA,...
Principal ideal Polynomial® Buchmann-Williams
Shortest lattice vector Subexponential®**> NTRU, Ajtai-Dwork, ...
Graph isomorphism Exponential _

Quantum algorithms: an overview

Ashley Montanaro
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Algebraic Problems
Andrew M. Childs and Wim van Dam, 2008

Fourier transforms over finite Abelian groups

1 X
Y
x) = —= E Wy [¥), Ew X))
NyEZ/NZ \/ ’G Vel
Wy = e23‘£i/N one-dimensional irreducible representations
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Algebraic Problems
Andrew M. Childs and Wim van Dam, 2008

Fourier transforms over finite Abelian groups

1 X
Y
x) = —= E Wy [¥), E P (x)|p)
NyEZ/NZ \/ ’G Vel
Wy = 2mi/N one-dimensional irreducible representations
o Y:G—C Yla+b)=y(a)y(b)
Efficient quantum circuit for the QFT
(1 1 1 1 \ re— o\ e2mi/2 =
1 oy oF wy !
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QFT
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An efficient (size O(n2)) quantum circuit for the quantum Fourier transform over Z/2nZ
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Period Finding Over Z/NZ

f:7Z/NZ — § with period r

— —

A=)
r

e/

f(x) = f(y) if and only if

We can find the period r efficiently using the HSP over the additive group Z/NZ..

Represent x € Z/NZ uniquely as an integerx € {0, ... , N—-1}
The irreducible representations ¢ : Z/NZ. — C can be labeled by integers y € {0,....N -1}
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1. Apply the Fourier transform over Z/NZ to the state 10)

Z/Nz) = — > W
xe/Z,/NZ,

2. Query the function f in an ancilla register

1
i XGZE/NZ X, f(x))
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Period Finding Over Z/NZ - Algorithim

3. Measure the ancilla register.

The first register will be in a superposition of those x consistent with the observed function value.

N 1
r r
= > |s+Jr)
Vi 3

for unknown offset s € {0,....,r — 1} corresponding to the uniformly random observed function value f(s)
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Period Finding Over Z/NZ - Algorithim

4. Apply the Fourier transform over Z/NZ

r ]
oy ).

N yeZ/NZ j=0

Let M = N/r so (x))]\,y — (Dﬁ hence E w1y =M8 ) mod M

only the values y&{0,N/r 2Nir,... (r—1)N/r} experience constructive interference

72 W |[kN /r)
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5. Measure the state in the computational basis.

giving kN/r and hence the fraction k/r

which, when reduced to lowest terms, has r/gcd(r,k) as its denominator.

6. Repeat the procedure to get a second denominator r/gcd( rk ).

If k and k are relatively prime, the least common multiple of v/ gcd(r, k) and r/ gcd(r, k )isr.

prrime(l - ﬁ) — 6/3'52 ~ (0.61



Quantum algorithms: an overview

Ashley Montanaro

Search and Optimisation




Quantum algorithms: an overview

Ashley Montanaro

Search and Optimisation

Unstructured search problem:

Given oracle {:{0, 1}11 — {0, 1}, find x such that f(x) =1




Quantum algorithms: an overview

Ashley Montanaro

Search and Optimisation

Unstructured search problem:

Given oracle {:{0, 1}11 — {0, 1}, find x such that f(x) =1

Grover O(\/N ) evaluations of f in the worst case



Quantum algorithms: an overview

Ashley Montanaro

Search and Optimisation

Unstructured search problem:

Given oracle {:{0, 1}11 — {0, 1}, find x such that f(x) =1

Grover O(\/N ) evaluations of f in the worst case

Heuristic search problem
Given a probabilistic guessing algorithm A,

a checking function f, such that

Pr[A outputs w such that f(w) =1] =¢

output w such that f(w) =1

—



Quantum algorithms: an overview

Ashley Montanaro

Search and Optimisation

Unstructured search problem:

Given oracle {:{0, 1}11 — {0, 1}, find x such that f(x) =1

Grover O(\/N ) evaluations of f in the worst case

Heuristic search problem
Given a probabilistic guessing algorithm A,

a checking function f, such that

Pr[A outputs w such that f(w) =1] =¢

output w such that f(w) =1

| ——

Amplitude Amplification O(1/+/€) evaluations of f in the worst case
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Grover as a subroutine

Finding the minimum of an unsorted list of N integers

Apply Grover to
g:{0, 1}" > {0, 1} defined by g(x)=1, if and only if fix)<T

for random threshold T that will be updated as inputs x are found such that f(x) is below the threshold

Solving systems of boolean multivariate quadratic equations

Input. fl(acl,...,xn),...,fm(azl,...,xn) c Fg[xl,...,xn].
Goal. Find — if any — a vector (z1,...,2,) € FJ such that:

fl(zl""7zn):()7'°'7fm(217'°'7zn):0°

combine Grover’s technique with a Grobner basis-based algorithm

O(20.47n)
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Quantumly-Enhanced

qubits transmissions and classical post-processing

v

unconditional security based on physical laws

Information gain vs. disturbance
No Cloning
Spooky actions at a distance
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1970 - quantum money (Wiesner)
The first link between secrecy and quantum physics
The bill contains photons that bank “polarised” in random directions

1984 - quantum key distribution (Bennett and Brassard; Ekert)
Become the most promising task of quantum cryptography

1999 - quantum secret sharing (Hillery, Buzek and Berthiaume; Cleve, Gottesman and Lo)
To distribute secret such that only the authorised partners could recover it

1997 - bit commitment and oblivious transfer (Lo and Chau, Mayers)
contrary to the case of QKD and secret sharing
quantum physics cannot guarantee unconditional security
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History

2007 - bounded-storage models (Damgaard et al; Wehner, Schaffner, Terhal)
unconditionally secure OT and BC is possible
where honest parties need no quantum memory, whereas an adversarial must store
at least n/2 qubits to break the protocol, where n is the number of qubits

2001- quantum digital signature (Gottesman and Chuang)
Similar to the classical case, based on one-way quantum function

2009 - 2-party coin flipping (Chailloux and Kerenidis)
Perfect quantum CF is impossible, but better than classical protocols exist
with best possible bias 0.21 (Kitaev 03)

2009 - blind quantum computing (Broadbent, Fitzsimons and Kashefi)
Unconditionally secure quantum delegated cmputing
with implementation (Barz, et.al. 2012)
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QKD

Unconditionally secure authentication of the classical channel
requires Alice and Bob to pre-share an initial secret key
or at least partially secret but identical random strings

QKD therefore does not create a secret key out of nothing:
it will expand a short secret key into a long one,
so strictly speaking it is a way of key-growing
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Bennett Brassard - on paper

Alice prepares a photon in one of the four states and sends it to Bob
Bob measures it in either the + or the x basis
This step is repeated N times. Both Alice and Bob have a list of N pairs (bit,basis)

Alice and Bob communicate over the classical channel and compare the basis
discard those in which they have used different bases
Alice and Bob have a list of approximately N/2 bits, this is called raw key

Alice and Bob reveal a random sample of their raw keys and estimate the error rate
They have to correct them and to erase the information that Eve obtains by
communication on the classical channel, (classical post-processing)

Alice and Bob share either a secret key or abort



Security

a non-secret key is never used

Either the authorised partners can create a secret key (a common list of secret bits
known only to themselves), or they abort the protocol.

After classical communication Alice and Bob estimate
how much information about their lists of bits has leaked out to Eve
Such an estimate is impossible in classical communication.

In a quantum channel, leakage of information is quantitatively related to a
perturbation of the communication.
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Security

fundamental principles of quantum physics

Any action, by which Eve extracts some information out of quantum states, is a
generalised form of measurement in quantum physics measurement in general
modifies the state of the measured system.

Eve’s goal is to have a perfect copy of the state that Alice sends to Bob
This is forbidden by the no-cloning theorem
one cannot duplicate an unknown quantum state while keeping the original intact

Quantum correlations obtained by separate measurements
on entangled pairs violate Bell’s inequalities
They cannot be created by pre-established agreement
The outcomes of the measurements did not exist before the measurements
but then, in particular, Eve could not know them.
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Post processing

(In the absence of system errors) the spy will get detected
by the errors she induces in the communication

But all practical systems have innocent errors!

A complete QKD protocol should consider all errors as errors due to Eve, take
iInto account possible information leakage, and bound this leakage as a
function of the error rate
this is performed by two additional processes

Error correction + Privacy amplification

both are classical procedures
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( Quantum W
Ltransmission J
Raw key 1
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A security proof of a QKD protocol, which provides a given shrinking factor is a
very difficult theoretical exercise with still many open questions
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Composable security

A composable definition of security is the one based on the trace-norm
(Ben-Or et al., 2005; Renner and Konig, 2005):

any state of Eve

/

%HP}CE — Tk ® pE|1 < e
2

actual state containing some correlations the completely mixed state on the set of possible final keys
between the final key and Eve

This is an extension of simulation-based definitions of universally composable security

Trace-norm contracts under QM transformations
plays the role of “statistical distance” or total variation



Security property - finally!

. \ |
sllpke — T @ pE| <€
the security requirement holds with high probability

Prob[|pxe — 7ic ® pel > 2] S ¢ Floxe

concretely, F will be depending on the protocol, and gives the length / of
the secret key that can be extracted as a function of the
indistinguishability/security parameter € for a certain level of risk
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Quantum Cloud Service
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Quantumly Enabled

Quantum Delegated Computing
Quantum Yao Garbled Circuit
Quantum Fully Homomorphic Encryption
Quantum One-time program

Quantum Secure Multi Party Computation



Trusted Quantum Cloud Computing

Program is encoded in the

control computer _

classical control computer

measurement site

/

/
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resource state

Computation Power is encoded in

the quantum entanglement




Abstract Model : Measurement-based QC

- New qubits, to prepare the auxiliary qubits: N
- Entanglements, to build the quantum channel: E
- Measurements, to propagate (manipulate) qubits: M

« Corrections, to make the computation deterministic: C
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Untrusted Quantum Cloud Computing

E(m) = (m+0+rm, |0)+ 1))

R
z

single encrypted qubit
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Hiding Program

control computer

+

/ / / /
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Informationally Secure Perfect Privacy

Server learns nothing about client’s input/output/function

/ resource stat

\ ( o | | Computing via Teleportation
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Hiding One Gate

gate teleportation
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Hiding One Gate
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Hiding One Gate
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Hiding the measurement result




Hiding One Gate
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Gates Composition
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Perfect decryption and encryption at each step —
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Client-Server interactions
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Blindness

Protocol P on input X = (U, {¢,.,}) leaks at most ( X)
= The distribution of the classical information obtained by Bob is independent of X

=> Given the above distribution, the quantum state is fixed and independent of X

\_
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= |ndependence of Bob’s classical information
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Informationally Secure Quantum, Cloud
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Universal Blind Quantum Computing: QKD + Teleportation
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Verifiable Outsourced Computing

Computation
RS \ ;\[((51 ), ;\[((52), 4‘7\[((5;)

)
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.......

Verifier

Verifiable Universal Blind Quantum Computing: QKD + Teleportation + Test
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Review on Private quantum computation
Joseph F. Fitzsimons, 2018




Yao Garbled Circuit - Secure 2-party Computing

Secret input a

Garbled Program f




Yao Garbled Circuit - Secure 2-party Computing

Ag. Ay

Bo. B
0, Ch

Dg, Dy

E > Ey, E,

e e

___4

): 1’i)~ Fl

\ Ho, H,

4

D Iy, I

Ence, .p,(F1)

Enc.-\”.!i,,( Fo)

Encr, 5, (Go)

EHC]._'”.(;” (Hq)

EnC(

i0.Fo (o)

Ence,.0,(F1)| |Enca,. 8, (E1)| [Ence, r (GL) ] |Ence,.a, (Ho)| |[Encg,, r, (1))
Ence, .po(F1)| |Enca, B,(E1)| |Ence, r,(Go)| |Ence, g, (Ho)| |Encg, 5, (11)




Yao Garbled Circuit - Secure 2-party Computing

Secret input a

{&
Ao _Eo By Ho. H,
Garbled F =o' Ty e )
0, Fy. Fy

D

Do. D;




Yao Garbled Circuit - Secure 2-party Computing

Secret input a

Garbled Program f




Yao Garbled Circuit - Secure 2-party Computing

Secret input a

Garbled Program f
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Insert secret input b
Evaluate f(a,b)




Yao Garbled Circuit - Secure 2-party Computing
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Quantum Adversaries

Malicious Server: Can deviate in any possible quantum way

Specious Client: Can deviate in any way, provided that for every step of the
protocol they can reproduce the honest state of that step by acting only on
their system. i.e. can pass an audit at all steps of the protocol.

Formally, an adversary A is e-specious if there exists a family
of CP-maps 7; : L(A;) — L(.A;) one for each step i of the
protocol such that for every allowed input p;,

A(T X I- ﬁi(A~7 Pin); ,0i(,0in)) § €

where p;(pj,) is the honest state at step / and ﬁ,-(AN,p,-n) the
state of the real (deviated) protocol at the same step.
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Malicious Client with Cut and Choose

1-way Q communication com(r),com(8),

com(0),

Client is QKD
Linear Q + Poly C overhead

Com(ainput),
com(keys for P,),
com(position of

raps 1n final)

coin tossing protocol to decide the evaluation graph

L 1 /4 0
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e ———

commitment to S version of

Kashefi Music Wallden 17



Malicious Client and Server with Cut and Choose

» Client chooses values for circuits

* Client creates commitments

» OT protocols => Server gets his inputs

» Client prepares and sends qubits

* Client sends commitments

» Coin-tossing protocol => Eval graph chosen
» Client decommits for the check graphs

- Server performs consistency checks

» Server run VUBQC protocol

- Key exchange protocol
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Secure Multi Party Quantum Computing

Secret input q_1

Garbled her part of the CP map

Secret input q_n

Classical SMPC is needed

No client-server colluding is allowed !

Garbled her part of the CP map
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Practical Classical SMPC

First large-scale practical experiment with MPC to implement a secure auction

Bogetoftx- Christensen-Damgardz-Geislerz-dakobsen-Krigaard-Nielsen-Nielseny-Pagter-Schwartzbachz-Toftyy08

Recently: Efficient (low communication) computational SMPC

Computation represented by a series of additions and multiplications of elements in Fp.

easy hard

Linear Verifiable Secret Sharing costly but offline FHE
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From Linear to Non-linear - Secure Computing
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From Linear to Non-linear - Secure Computing

control computer /

measurement site

/

/

/ / / /

/

XOR gates:
onetime padding

O______
SEiE

resource state

Single qubits

Secure NAND




Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014
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Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.
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Restricted XOR Client

No quantum offline protocol can delegate deterministically computation
of NAND to a server while keeping the blindness
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Secure NAND

syncronization of signals necessary

50m of fiber
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Perspective

Can we do something with even few qubits ?

Classical Linear SMPC

versus Classical SMPC

Contextual States

Classical Non-linear SMPC

Computation represented by a series of additions and multiplications of elements in Fp.

easy hard

Linear Verifiable Secret Sharing costly but offline FHE



Future Network

A hybrid network of classical protocols with quantum gadgets
boosting efficiency and security

of every task achievable against classical attackers against quantum attackers
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